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ABSTRACT 

 

This graduation project thesis focuses on the fusion of remote sensing and artificial 

intelligence (AI) techniques for environmental analysis and infrastructure management. 

The thesis consists of interconnected projects that address data gathering and 

processing, water resources management, anomaly detection in crop patterns, crop 

classification, and oil storage detection . 

The projects aim to automate the workflow of satellite imagery data processing, 

facilitating near-real-time access to ESA archive data. Utilizing remote sensing 

technology, comprehensive tools are developed for water resources management and 

drought monitoring. The thesis also explores anomaly detection in crop patterns and 

accurate crop classification, with a focus on rice crops in California. Additionally, the 

research investigates the detection and classification of oil storage facilities using high-

resolution satellite data and AI algorithms. 

The fusion of remote sensing and AI techniques throughout the projects enables 

efficient data analysis, informed decision-making, and optimized resource 

management. The outcomes provide practical tools and methodologies for researchers, 

policymakers, and industry professionals in diverse fields. The research contributes to 

sustainability, precision agriculture, and infrastructure management, leveraging the 

potential of advanced technologies. 
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1. INTRODUCTION 

 
Remote sensing and artificial intelligence (AI) techniques have emerged as a 

promising approach for addressing complex environmental challenges and 

enhancing infrastructure management. This thesis focuses on the fusion of these 

two technologies to develop comprehensive tools for environmental analysis and 

infrastructure management. The thesis consists of five interconnected projects that 

address data gathering and processing, water resources management, anomaly 

detection in crop patterns, crop classification, and oil storage detection. The first 

project aims to automate the workflow of satellite imagery data processing, making 

ESA archive data accessible in near-real time. This project will develop 

comprehensive tools for data gathering and processing, streamlining the workflow 

of satellite data processing and analysis. The project will be implemented using the 

Python programming language and open-source libraries. The second project will 

develop comprehensive tools for water resources management and drought 

monitoring using remote sensing technology. This project will include the 

development of methodologies for drought monitoring, using AI algorithms to 

analyze satellite imagery data and identify areas of water stress. The third project 

will focus on crop anomaly detection in other crop types. This project will develop 

methodologies for identifying crop anomalies using remote sensing technology and 

deep learning algorithms. This project will seek to improve crop management 

practices and enhance yield prediction for these important crops. The project will 

be implemented using unmanned aerial systems and the TensorFlow library. The 

fourth project will investigate accurate crop classification, and yield prediction, 

with a focus on rice crops in California. This project will develop comprehensive 

tools for crop analysis, leveraging remote sensing technology and AI algorithms. 

This project will include the development of methodologies for crop classification, 

enabling more accurate and efficient crop management. The project will be 

implemented using the TensorFlow library for deep learning. The fifth project will 

examine the detection and classification of oil storage facilities using high-

resolution satellite data and AI algorithms. This project will develop comprehensive 

tools for infrastructure management, enabling better decision-making and 

optimized resource management. The project will be implemented using Google 

Earth satellite imagery datasets. The fusion of remote sensing and AI techniques in 

these projects enables efficient data analysis, informed decision-making, and 

optimized resource management. The outcomes of these projects provide practical 

tools and methodologies for researchers, policymakers, and industry professionals 

in diverse fields. This research contributes to sustainability, precision agriculture, 

and infrastructure management, leveraging the potential of advanced technologies. 

In this thesis, we will explore the fusion of remote sensing and AI techniques for 

environmental analysis and infrastructure management. We will present five 

interconnected projects that address data gathering and processing, water resources 

management, anomaly detection in crop patterns, crop classification, and oil storage 

detection. The outcomes of these projects will provide practical tools and 

methodologies for researchers, policymakers, and industry professionals in diverse 

fields. This research will contribute to sustainability, precision agriculture, and 

infrastructure management, leveraging the potential of advanced technologies. 
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2.Project Description 

 

The goal of this project is to develop a comprehensive framework for remote sensing 

applications, leveraging hyperspectral images obtained from the Sentinel satellite. 

Remote sensing plays a crucial role in gathering valuable information about specific 

areas and applications. Our framework will serve as a robust backbone, facilitating 

essential tasks such as data acquisition, region and time specification, and accounting 

for cloud coverage. By utilizing advanced algorithms and cutting-edge technology, we 

aim to enhance the effectiveness and efficiency of remote sensing applications. 

The framework will begin with the development of algorithms specifically designed to 

download data from the Sentinel-1 and Sentinel-2 satellites. These algorithms will 

empower users to specify their desired regions of interest and timeframes for data 

collection, while considering the cloud coverage percentage. By leveraging the wealth 

of information provided by hyperspectral images, we can extract valuable insights to 

address various remote sensing needs . 

Once the data is collected, a thorough preprocessing stage will be implemented. This 

stage will involve shaping and resizing the images to ensure they meet the specific 

requirements of the intended applications. By optimizing the data, we aim to improve 

the accuracy and reliability of subsequent analyses and modeling processes. 

Due to the large volume of satellite images involved, advanced hardware infrastructure 

is essential. The size of individual tiles can range from 0.5 to 1 gigabyte, and covering 

the entire area of Egypt typically requires processing 25 to 30 tiles. To efficiently 

manage these computational demands, we will leverage cloud servers. Among the 

available options, we have chosen Amazon Web Services (AWS) as our preferred cloud 

solution. AWS offers scalability, reliability, and extensive features, making it an ideal 

choice for processing and storing vast amounts of remote sensing data. 

The project workflow follows a systematic approach. It begins with data collection 

from diverse sources based on user-defined requirements. The collected data is then 

processed using our framework, ensuring it is appropriately shaped and sized for the 

specific applications. The framework will incorporate automation techniques to 

streamline the analysis and modeling processes. 
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3.Project Impact 

The projects described in this thesis have a significant impact on various aspects of 

sustainable development, aligning with Egypt's Vision 2030. Egypt's Vision 2030 is a 

comprehensive plan that aims to transform the country into a sustainable, knowledge-

based economy, with a focus on inclusive growth, social justice, and environmental 

sustainability. 

3.1. Advancing Egypt's Vision 2030 

The projects described in this thesis have a significant impact on Egypt's Vision 2030, 

a comprehensive plan aimed at transforming the country into a sustainable and 

knowledge-based economy. Here's a summary of the specific impact on Egypt's Vision 

2030 

 

 

Figure 1-2   
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1. Satellite imaging technology plays a crucial role in achieving 

these goals by enabling accurate monitoring and assessment of 

agricultural resources, helping to increase productivity and 

reduce food insecurity. It also supports urban planning and 

infrastructure development by providing detailed mapping and 

monitoring capabilities. Additionally, satellite images aid in 

disaster management and response, allowing for timely and 

effective relief efforts. Moreover, the technology facilitates 

improved access to education and healthcare services in remote 

areas through telemedicine and distance learning initiatives. 

Overall, satellite imaging technology enhances the quality of life 

in Egypt by addressing key socio-economic challenges and 

fostering sustainable development. 
 

 

 

2. Satellite imaging technology contributes to justice and inclusion 

by promoting transparency and accountability in resource 

allocation and service delivery. It helps identify areas of 

inequality and enables targeted interventions to address 

disparities in access to resources and opportunities. By providing 

accurate data on population distribution and infrastructure gaps, 

satellite imaging supports evidence-based policymaking that 

ensures inclusive development across rural and urban areas. It 

also facilitates the monitoring and protection of marginalized 

communities, empowering them to participate in decision-

making processes. Ultimately, satellite imaging technology 

strengthens justice, social inclusion, and participation by 

promoting equal rights, opportunities, and the sense of belonging 

to the Egyptian identity. 
 

 

 

3. Satellite imaging technology plays a vital role in fostering a 

strong economy by supporting informed decision-making in 

various sectors. It aids in assessing natural resources, such as 

mineral deposits and water sources, facilitating their sustainable 

utilization and contributing to economic diversification. 

Additionally, satellite images assist in monitoring infrastructure 

development and identifying potential investment opportunities. 

By providing accurate data on land use and urban planning, 

satellite imaging enables effective resource allocation and 

promotes a favorable business environment. Moreover, it helps in 

assessing environmental impacts and incorporating sustainable 

practices into economic development strategies. Overall, satellite 

imaging technology contributes to a competitive and diversified 

economy by enhancing knowledge-based growth, digital 

transformation, and sustainable resource management.  
 

 

Direct Positive  

Indirect Positive  

Direct Positive  
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4. Satellite imaging technology supports knowledge and innovation 

by providing valuable data for scientific research and 

development initiatives. It enables researchers to study various 

aspects of the Earth's surface, climate patterns, and natural 

phenomena, fostering a better understanding of the world and 

driving innovation in various fields. Satellite images also aid in 

mapping and monitoring archaeological sites, contributing to the 

preservation of cultural heritage, and promoting historical 

research. By linking scientific research to education and 

development, satellite imaging technology facilitates the transfer 

of knowledge and encourages continuous learning. Ultimately, it 

enhances Egypt's capacity for knowledge-based development and 

fuels innovation across multiple sectors. 
 

 

 
 

 

 

 

5.  Satellite imaging technology plays a critical role in promoting 

environmental sustainability by providing essential data for 

monitoring and addressing climate change impacts. It aids in 

assessing and managing natural resources, such as forests, water 

bodies, and biodiversity, contributing to their conservation and 

sustainable use. Satellite images help in identifying areas prone 

to natural disasters, facilitating effective disaster preparedness 

and response strategies. Additionally, satellite technology 

supports the expansion of renewable energy sources by assisting 

in site selection and monitoring energy infrastructure. By 

promoting sustainable consumption and production patterns, 

satellite imaging technology contributes to creating an integrated 

and sustainable ecosystem for the present and future generations. 

 
 

        

 

 

 

 

 

 

 

6. Satellite imaging technology strengthens governance by 

providing reliable and objective data for evidence-based 

decision-making. It aids in monitoring and evaluating the 

performance of state institutions, private sector entities, and civil 

society organizations. By promoting transparency and 

accountability, satellite images contribute to combating 

corruption and ensuring adherence to laws and regulations. The 

technology also supports the enforcement of the rule of law by 

providing accurate information for legal proceedings and 

investigations. Ultimately, satellite imaging enhances the 

efficiency and effectiveness of governance in Egypt by 

establishing an institutional framework that fosters transparency, 

accountability, and the rule of law. 
 

 

 

 

Indirect Positive  

Indirect Positive  

Direct Positive  
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7. Satellite imaging technology plays a crucial role in enhancing 

Egyptian peace and security by supporting various aspects of 

national and regional security. It aids in monitoring and securing 

borders, providing valuable data on border activities and potential 

security threats. Satellite images also contribute to counter-

terrorism efforts by assisting in the identification and tracking of 

terrorist activities and networks. Additionally, satellite 

technology facilitates the monitoring and protection of critical 

infrastructure, ensuring sustainable energy security and 

information security (cyber). By providing accurate data on 

natural resources, satellite imaging helps in ensuring food and 

water security and supporting environmental stability. Overall, 

satellite imaging technology strengthens Egyptian peace and 

security by addressing key security challenges and fostering 

stability and sustainable development.  

 

 

 
 

  

8. Satellite imaging technology strengthens Egypt's leadership 

position by enhancing its capabilities in regional and international 

partnerships. By providing accurate and up-to-date data, satellite 

images contribute to evidence-based decision-making and 

facilitate collaboration on regional development initiatives. The 

technology enables Egypt to showcase its expertise and resources 

in areas such as infrastructure development, environmental 

conservation, and disaster management, solidifying its leadership 

role in these domains. Satellite imaging also supports information 

sharing and cooperation with other countries, fostering trust and 

building stronger partnerships. Ultimately, satellite imaging 

technology reinforces Egypt's leadership position by enabling 

effective collaboration and showcasing its commitment to 

comprehensive development at the regional and international 

levels. 

3.2. SDGs by Impact assessment Tool  

This research assesses the impact of integrated remote sensing and AI projects on the 

Sustainable Development Goals (SDGs). By utilizing advanced technologies, these 

projects contribute to sustainable development in various areas. The assessment 

explores how these projects align with specific SDGs, providing valuable insights into 

their transformative potential for achievable sustainability targets.  

             

Indirect Positive  

Direct Positive 
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In summary, the integrated remote sensing and AI projects outlined in this research 

have a profound impact on both the Sustainable Development Goals (SDGs) and 

Egypt's Vision 2030. These projects contribute to various SDGs, including economic 

growth, food security, sustainable agriculture, water resource management, 

infrastructure development, innovation and technology, environmental sustainability, 

and collaborative partnerships. By promoting economic prosperity, ensuring food self-

sufficiency, advancing sustainable agricultural practices, optimizing resource 

management, developing resilient infrastructure, fostering innovation, and supporting 

environmental conservation, these projects align with Egypt's Vision 2030 goals. 

Through their collective efforts, they contribute to the realization of sustainable 

development objectives, paving the way for a prosperous and sustainable future in 

Egypt.  
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4.DATA GATHERING 

 

Abstract  

 
The fields of Remote Sensing and GIS have become increasingly important and 

attractive due to expanding opportunities and growing interest in better understanding 

our environment. In the context of prototyping a remote sensing solution that can collect 

and analyze data about the Earth's surface from a distance using sensors and imaging 

technology, it can provide valuable insights into various aspects of the Earth's surface, 

such as land cover, vegetation, water resources, and urban development, using machine 

learning and AI algorithms. The process of gathering and processing satellite imagery 

datasets can be time-consuming and resource-intensive, requiring significant manual 

effort to download, organize, and prepare the data for analysis. Therefore, the main 

focus of this thesis is to investigate the potential for the process of satellite imagery 

dataset gathering and post-processing to develop an automated workflow that can 

download, process, and prepare satellite data for AI models in near-real-time. To 

achieve this goal, the thesis will provide an automated workflow that is designed to 

perform mainly four sequential tasks. The first task is data downloading, where the 

workflow can automatically download satellite imagery data from the ESA archive 

using Sentinel Hub APIs based on user input such as the area of interest and date range. 

If there is a well-organized data system, access to satellite data will be more efficient 

and productive, facilitating the analysis process by providing a unified view of the data. 

The second task is to automatically organize the downloaded data in a structured 

manner to provide a flexible and smooth approach to obtaining high-quality data. If the 

images used in the analysis are acquired from different sensors, it is difficult for any AI 

model to deal with them because each sensor has unique characteristics, such as 

different spatial resolutions, viewing angles, and spectral ranges. Therefore, the third 

step is to tackle this problem, where the co-registration process will be done 

automatically to align the images spatially and have the same scale, orientation, and 

geometrical features, which are essential for accurate analysis and interpretation of the 

data. Afterwards, tiling is always needed as large images have to be split into tiles 

before being used by the AI model and this is what the final step does. After these steps, 

the data will be ready to be passed into the AI models. Designing this automated 

workflow required careful planning and coordination between different components of 

the system to be flexible and adaptable to use cases so that it can handle different types 

of data, reduce the time and effort required to process these data, and enable faster and 

more accurate analysis of the data. 

Introduction  

1.1 Background  
Artificial satellites have been in existence for over 50 years since the launch of Sputnik 

in 1957. This launch ushered in the space age and confirmed Sir Isaac Newton’s 

theoretical explanation of how an artificial satellite could be launched into Earth orbit. 

Today, the world of satellites can be categorized into two broad areas: scientific 

satellites and applications satellites. Scientific satellites explore our world, our solar 

system, our galaxy, and radiation from the Van Allen Belts to cosmic radiation. On the 

other hand, applications satellites provide practical services to people here on Earth. 
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These satellites are a part of our everyday lives whether we know it or not. One of these 

applications satellites is remote sensing and Earth observation satellites that truly serve 

humankind. [1] 

Remote sensing via satellite has become a key service that is used in many civil 

applications such as agriculture, forestry, mining (and prospecting for many types of 

resources), map making, research in geosciences, urban planning, land 

speculation, disaster warning, and other activities to sustain the biodiversity of plant 

and animal life on our planet. [1] Responding to major disasters routinely involves 

analysis of satellite imagery, which means that they have become more sophisticated 

and reliable. So, providing an automation process of satellite imagery analysis allows 

for more monitoring and fast response to some issues. [2] 

The process of data collection is a major bottleneck in machine learning and an active 

area of research in multiple communities. The emergence of new machine learning 

applications and the use of deep learning techniques that require larger amounts of 

labeled data have made data collection a critical issue. Researchers in machine 

learning, natural language, computer vision, and data management communities are 

actively working on data collection. The integration of machine learning and data 

management for data collection is part of the trend of big data and Artificial 

Intelligence integration, which presents many opportunities for new research.[2] 

Remote sensing data processing has significant societal value in applications such 

as urban monitoring, fire detection, and flood prediction. The process of remotely 

sensed multispectral or radar images is crucial for addressing economic and 

environmental issues. Remote sensing has become a multidisciplinary field that relies 

heavily on machine learning and signal processing algorithms to efficiently process 

acquired data and provide accurate results.[3] 
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1.2 Problem statements  
In the charts above, a survey of data scientists found that they spend the majority of 

their time cleaning and organizing data 60%, followed by collecting datasets 19%. This 

means that around 80% of their time is spent on preparing and managing data for 

analysis. Data preparation is viewed as the least enjoyable part of their work by 76% of 

data scientists, while 57% find cleaning and organizing data to be the least enjoyable, 

and 19% say the same about collecting datasets.[4] Therefore, this thesis comes to solve 

two major challenges. 

First challenge: Due to many satellites in orbit, According to the UCS there were 971 

EO satellites in orbits on the 30th April 2021[5], massive data are added day by day to 

archives. So, it consumes time for non-expert user to deal with such big data to 

download the correct images for best use.  

60%19%

9%

4%
3%5%

What are activities the data scientists spend most of their time on?

Cleaning and organizing data

Collecting datasets

Mining data for patterns

Refining algorithms

Building training set

Other

57%

21%

10%

5%
4%3%

What is the leat enjoyable part in data science? 

CH 4 Figure 1: Top: Time consuming activities of data science, Bottom: Least enjoyable activities 

of data science [4] 

CH 4 Figure 2: Example of a multispectral image acquired by the passive Sentinel2-L1C sensor over east of 

Beni Suef, Egypt. The image is obtained from sentinelhup request builder platform. The image is taken on 27-

6-2023: spectral channels corresponding to blue (a), green (b), red (c), and NIR radiation (d); the true color 

composite (e), in which the R, G, and B components of the displayed image are associated with the red, green, 

and blue channels of the multispectral image, respectively; and a false color composite (f), in which the R, G, 

and B components of the displayed image are associated with the NIR, red, and green channels of the 

multispectral image, respectively.CH 4 Figure 3: Top: Time consuming activities of data science, 

Bottom: Least enjoyable activities of data science [4] 
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Second challenge: the satellite imagery acquired at different times or by different 

sensors can result in misalignments or distortions in the images which are not match 

each other in terms of their spatial orientation and scale. A certain process must be done 

to align these images to be acceptable by models for train or test. 

1.3 Aims of the study.  
Concerning the problem statements discussed above, the overall aim of this thesis is to 

build an automatic process beginning downloading the images according to user request 

from the area of interest and time interval of images, to solve the first challenge 

discussed above, passing to co-register the downloaded images to align each other 

making the images more suitable to use, to solve the second challenge discussed above, 

finally split these images into patches based on the user request for the height and 

weight for each patch. Providing by this workflow, data is ready to be processed by 

some AI technique directly. 

2 Literature review   

2.1 Remote sensing history 
Remote sensing has a rich history, dating back to the use of cameras and the naked eye 

from balloons, kites, and pigeons. Advancements in aircraft and technology during wars 

led to aerial remote sensing capabilities, while the space age brought about space 

remote sensing, which has been used for military reconnaissance, weather prediction, 

and environmental analysis. Today, many countries operate their own remote sensing 

satellite systems for various applications. The first civil remote sensing satellite was 

launched in 1960, followed by the Landsat program in 1972. France's SPOT program 

was successful in producing remote sensing data for commercial use. Currently, over 

30 nations operate various types of satellite systems, with the latest being hyper spectral 

imaging sensors, which provide narrow-band imaging and present challenges for data 

processing. Remote sensing technology has also played a significant role in post-Cold 

War era stability and served as the basis for robotic exploration of other planets.[1] 

2.2 Remote sensing definition  
The field of remote sensing has been defined in various ways. One of the most specified 

definitions is “The science of deriving information about an object from measurements 

made at a distance from the object without actually coming in contact with it.” [10]. 

The act of remote sensing involves detecting and recording energy that is reflected or 

emitted, and then analyzing and utilizing that information [11].  

2.3 Remote sensing process  
To achieve the process of remote sensing, radiation is sent from a satellite or a natural 

radiation source like the sun towards the Earth or a specific object of interest. As this 

radiation reaches the object, it reflects back energy. This reflected energy is captured 

by remote sensing satellites and transmitted to a remote station for conversion into 

images. Remote sensing involves gathering data in the form of images that reflect 

energy, providing more spectral and spatial information compared to regular images. 

This information reveals the structure, shape, and texture of the object being studied 

which are processed to extract information about the object, such as water bodies, 

agriculture, land cover classification, and more.[12] 
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CH 4 Figure 2: Overview of the remote sensing process [10]. 

There are two types of remote sensing: passive sensing, which measures energy generated by 

natural sources such as the sun using passive sensors, and active sensing, which measures 

energy generated by satellite sources such as electromagnetic radiation, radar, and microwave 

which are called active sensors[13]. 

 

 

 

 

 

 

 

 
 

 

2.3.1 Passive Sensors for EO 

Passive sensors receive electromagnetic radiation from a portion of the Earth's surface, 

either from the reflection of incident solar radiation or from spontaneous emission by 

the surface itself. The physical quantity measured by a passive EO sensor is the spectral 

radiance, which represents the power per unit wavelength that travels in a unitary solid 

angle centered on a given direction through a unitary surface. The received radiance 

depends on the reflective properties of the observed surface in visible (i.e., with a 

wavelength between approximately 0.4 and 0.7µm), near-infrared range (NIR, 0.7–

1.1µm), and short-wave infrared range (SWIR, 1.1–1.35µm, 1.4–1.8µm, and 2–2.5µm). 

CH 4 Figure 6: Passive Sensing    

CH 4 Figure 4: Active Sensing  CH 4 Figure 3: Passive Sensing  
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Passive EO sensors are usually multispectral, as shown in Figure 5, and hyperspectral 

sensors collect data from hundreds of channels with narrow bandwidths. Multispectral 

acquisition can be accomplished using prisms and optical filters, or separate cameras 

that operate in distinct wavelength ranges. Data collected by passive sensors are 

affected by atmospheric and Sun-illumination conditions. [23]  

 
 

2.3.2 Active Sensors for EO 

Active sensors for EO transmit an electromagnetic pulse towards the Earth's 

surface and receive the resulting "echo" signal. Microwave signals are typically 

used for 2D remote sensing image acquisition based on a radar (Radio Detection 

and Ranging) instrument. Synthetic Aperture Radar (SAR) uses the motion of 

the platform to simulate a long antenna and achieve high spatial resolution along 

the flight direction. Active sensors are almost insensitive to cloud cover and 

atmospheric conditions and provide day-and-night and all-weather acquisition 

capability. [23]  

 

 

 

 

 

 

 

 

 

 

CH4 Figure6: Example of a SAR image acquired by the Sentinel1 over east of Beni Suef, Egypt. The 

image is obtained from sentinel hub request builder platform. The image is taken on 24-6-2023: 

channel corresponding to polarization. 

CH 4-Figure 5: Example of a multispectral image acquired by the passive Sentinel2-L1C sensor over east of Beni 

Suef, Egypt. The image is obtained from sentinelhup request builder platform. The image is taken on 27-6-2023: 

spectral channels corresponding to blue (a), green (b), red (c), and NIR radiation (d); the true color composite (e), in 

which the R, G, and B components of the displayed image are associated with the red, green, and blue channels of the 

multispectral image, respectively; and a false color composite (f), in which the R, G, and B components of the 

displayed image are associated with the NIR, red, and green channels of the multispectral image, respectively. 
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2.4 Articles reviews 
The power of satellite imagery shines in how far it can be used in the service of humans 

and how far the researchers and scientists enable from analyzing satellite imagery in 

their way of human evolution. The following are some articles in which research mainly 

relied on satellite imagery datasets to develop their research and came out with accurate 

results helping in building a more powerful community. 

2.4.1 Review about article1 

In an article about the challenges of accurately mapping paddy rice in cloudy and 

foggy regions using optical images. An automatic mapping method using Sentinel-

1 Synthetic Aperture Radar (SAR) data pre-processes by The Sentinel Applications 

Platform (SNAP) 6.0.0 and Python 3.8.2 versions. The method, called Auto-CFM, 

is based on constrained feature matching, and can handle partial missing images. 

The study validated this method in different provinces with varying planting times, 

climates, and topographies. The article concludes that this method can provide 

timely and accurate information on rice cultivation areas before harvest, which is 

essential for coordinating agricultural production and ensuring grain security. [6] 

2.4.2 Review about article2 

In research about the generation of national agricultural land cover maps yearly 

taking into its account the varying environmental conditions. The study uses 

a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 

in combination with monthly Sentinel-1 composites and environmental data to 

evaluate the relative importance of optical, radar, and environmental data. The 

study concludes that the integrated use of optical time series and SAR data, along 

with variables describing local and seasonal environmental conditions, can 

effectively map large-area crop types on an annual basis. [7] 

 
2.4.3 Review about article3 

A literature article highlights the importance of monitoring shorelines using satellite 

images to identify environmental issues such as coastal erosion. The article 

proposes a technique for automatically creating labeled datasets of satellite images 

for shoreline detection by integrating data from satellite photos and publicly 

accessible shoreline data. The study uses Sentinel-2 data for creating a dataset for 

shoreline detection due to its better performance in terms of spatial resolution 

and revisits period compared to other public continuous Earth observation 

missions. [8]The practical implementation involves obtaining Sentinel-2 Level-1C 

tiles using the Plateforme d’Exploitation des Produits Sentinel of the Centre 

National d’études Spatiales [9], selecting satellite images based on location and 

date, and processing the tiles to extract semantically annotated samples. This 

involves generating Level-2A products, projecting shoreline paths, and splitting the 

tiles into sub-tiles of size 256x256. The processing focuses on sub-tiles containing 

shoreline paths and involves creating a binary segmentation map for each sub-tile. 

The article concludes that the proposed method eliminates the need for manual 

annotation and subjective interpretation of satellite images and can be used to 

train neural models for sea-land segmentation. [8] 

It is obvious that satellite imagery plays a crucial role in a wide range of applications 

and research areas beyond those mentioned earlier. Its importance as a primary source 
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of information is evident in the numerous fields that rely on it for accurate and up-to-

date data. 

 

3. Methodology  

3.1 Dataset  
As shown previously, the literature review ensures that the Sentinel satellites are 

effective in many aspects and service many applications so this thesis limits satellite 

imagery datasets only to Sentinel1 and Sentinel2 images.  

The algorithm is built mainly by Sentinel Hub which is a satellite imagery service that 

utilizes multi-spectral and multi-temporal data products and supports various data 

collections, which include freely available and commercial collections to provide 

access to large volumes of remote sensing information and related EO. The service is 

capable of fully automated archiving, real-time processing, and distribution of data. By 

using APIs, an intermediary that allows applications to access the features or data of 

another application or system, users can retrieve satellite data for their area of interest 

(AOI) and specific time range from the complete archives in just a matter of seconds. 

[14] 

3.1.1 Background sentinel1 [15] 

3.1.1.1 Overview 

The Sentinel-1 mission is a constellation of two 

polar-orbiting satellites with a planned launch 

of Sentinel-1A on April 3, 2014, and Sentinel-

1B on April 25, 2016. The satellites share the 

same orbit plane with a 180° orbital phasing 

difference. 

3.1.1.2 Mission Orbit 

• Sun-synchronous, near-polar, 

circular orbit 

• 693 km orbit height 

• 98.18° inclination            

• 12-day repeat cycle at Equator with one satellite, 175 orbits/cycle.  

3.1.1.3 Instrument Payload 

C-band Synthetic Aperture Radar 

• Centre frequency: 5.405 GHz 

• Polarization: VV+VH, HH+HV, HH,VV 

3.1.1.4 Mission Objectives 

The mission objectives include land monitoring of forests, water, soil, and 

agriculture, emergency mapping support in the event of natural disasters, marine 

monitoring of the maritime environment, sea ice observations and iceberg monitoring, 

production of high-resolution ice charts, forecasting ice conditions at sea, mapping oil 

spills, sea vessel detection, and climate change monitoring. 

 

CH 4 Figure 7: Sentinel1 SAR 

Figure-4: Sentinel1 SAR 

2 
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3.1.1.5 Acquisition Modes 

Sentinel-1 operates in four exclusive acquisition modes: 

• Stripmap (SM) for small islands  

• Interferometric Wide swath (IW) for land 

• Extra-Wide swath (EW) for wide area coastal monitoring 

• Wave (WV) for open ocean 

3.1.1.6 Resolution  

Spatial resolutions depend on the acquisition mode and the level of processing. 

High resolution Level-1 GRD 

Resolution -> 20x22 m 

Pixel spacing -> 10x10 m. 

 

3.1.2 Background sentinel2  

3.1.2.1 Overview [17] 

The Copernicus SENTINEL-2 mission 

comprises a constellation of two polar-orbiting 

with planned launch SENTINEL-2A on 23 June 

2015 and Sentinel-2B on 7 March. The satellites 

share the same orbit plane with a 180° orbital 

phasing difference.        

3.1.2.2 Mission Orbit [17] 

• Sun-synchronous, near-polar, circular orbit 786 km 

orbit height 

• 98.62 ° inclination 

• 10-day repeat cycle, 143 orbits/cycle. 

 

3.1.2.3 Instrument Payload [17] 

Each of the satellites carries a single payload. 

▪ The Multi-Spectral Instrument measures the Earth's reflected radiance in 13 

spectral bands from VNIR to SWIR. 

3.1.2.4 Mission Objectives 

The mission provides systematic global high-resolution multispectral imagery with a 

high revisit frequency, enhanced continuity of multi-spectral imagery provided by 

the SPOT series, and observations for the next generation of operational products such 

as land-cover maps, land-change detection maps, and geophysical variables. [16] 
 

Figure 8: Sentinel2 MSI CH4 
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3.1.2.5 Product types 
 

CH4 Table 1 : Sentinel2 Product Types [17] 

 

For Level-1C and Level-2A, the 

granules, also called tiles, are 110x110 

km2 ortho-images in UTM/WGS84 

projection.  

 

 

3.1.2.6 Resolution  

The spatial resolution of SENTINEL-2 is 

dependent on the particular spectral band. 

Name Description Resolution 

B01 Coastal aerosol, 442.7 nm (S2A), 442.3 nm (S2B) 60m 

B02 Blue, 492.4 nm (S2A), 492.1 nm (S2B) 10m 

B03 Green, 559.8 nm (S2A), 559.0 nm (S2B) 10m 

B04 Red, 664.6 nm (S2A), 665.0 nm (S2B) 10m 

B05 Vegetation red edge, 704.1 nm (S2A), 703.8 nm (S2B) 20m 

B06 Vegetation red edge, 740.5 nm (S2A), 739.1 nm (S2B) 20m 

B07 Vegetation red edge, 782.8 nm (S2A), 779.7 nm (S2B) 20m 

B08 NIR, 832.8 nm (S2A), 833.0 nm (S2B) 10m 

B8A Narrow NIR, 864.7 nm (S2A), 864.0 nm (S2B) 20m 

B09 Water vapour, 945.1 nm (S2A), 943.2 nm (S2B) 60m 

B10 SWIR – Cirrus, 1373.5 nm (S2A), 1376.9 nm (S2B) 60m 

B11 SWIR, 1613.7 nm (S2A), 1610.4 nm (S2B) 20m 

B12 SWIR, 2202.4 nm (S2A), 2185.7 nm (S2B) 20m 
CH4 Table 2 : Sentinel2 available bands [18] 

Type Code Description Users 
Production & 

Distribution 

User 

Product 

Level-

1B 

Top-Of-Atmosphere radiances in 

sensor geometry 

Expert 

Users 

Systematic generation 

and online distribution 

Level-

1C 

Top-of-atmosphere reflectances in 

cartographic geometry 

All 

Users 

Systematic generation 

and online distribution 
Level-

2A 

Atmospherically corrected Surface 

Reflectances in cartographic 

geometry 

CH 4 Figure 9: Level1-1C Product tiling [17]   
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3.2 Access Sentinel Hub images using WMS. 
To avoid the complexities of Sentinel satellites data and without need for large storage 

volumes and lots of processing power. OGC using the standard WMS, One of API of 

Sentinel Hub, not only provides access to raw satellite data but also to processed 

products such as true color imagery and NDVI. Access to the service is done via a 

custom server instance URL. [20] 

There are some parameters needed to involve in WMS request shown in the table below.  

WMS parameter Information 

data collection 

Required 

Type the mission which to return the results. 

bbox 

Required 

The bounding box of the requested image must be defined by four 

coordinates in the specified coordinate reference system. The 

coordinates should be separated by commas and represent the top-left 

and bottom-right corners of the bounding box. 

time 

Optional 

The time for which to return the results. It may be single time or time 

interval. The result is based on all scenes between the specified times. 

Note: Requesting a single value for TIME parameter is deprecated. 

Sentinel Hub interpreted it as a time interval [given time - 6 months, 

given time]. For the vast majority of cases this resulted in 

unnecessary long processing time thus we strongly encourage you to 

always use the smallest possible time range instead. 

The default: none (the last valid image is returned). 

CRS 

Optional 

The coordinate reference system (CRS) in which the bounding 

box (BBOX) is defined and in which the resulting image will be 

returned. 

The default: "EPSG:3857". 

format 

Optional 

The returned image formats. 

The default: "image/png", other options: "image/jpeg", "image/tiff". 

width 

Required 

The returned image width in pixels. 

Optional when HEIGHT is used 

height 

Optional 

The returned image height in pixels. 

Required, unless WIDTH is used. 

layer 

Required 

The preconfigured layer (image) to be returned as true color, NDVI 

and etc. 

maxcc 

Optional 

The maximum cloud coverage of returned images. 

CH4 Table 3: Standard common WMS parameters [20] 

So, the question arises here, how does user configure a layer? 

1. Sign up for the sentinel Hub account.  

2. Create a new configuration for layers.  

3.  Add a new layer then choose from available options which have to fit with the 

use case. 

4. With configuration ID and layer ID, the sentinel images can be accessed from 

any Sentinel Hub APIs. 

The workflow uses WMS to obtain Sentinel1 and Sentinel2 images with different 

characteristics of images as will be shown later. 
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 3.2.1 Characteristics of the returned images with WMS 

The requests of WMS return two outputs to each image.  

1. Image based on the request with  

o extension -> tiff  

o size -> 512 width 

2.  Json file with valuable information about the image. 

 

3.3 Access Sentinel Hub images using WFS. 
Another standard of OGC is WFS. It provides access to the geometric (vector) metadata 

about the available data collection tiles [21]. The advantage of this service is that 

Sentinel-2 imagery and additional data are stored on AWS S3 storage buckets, which 

are more stable of this workflow as it uses AWS to run the request and to store the 

downloaded data.  

The data at AWS is the same as original S-2 data provided by ESA. The archive of 

Sentinel-2 data at AWS consists of two buckets, one containing L1C and the other 

containing L2A data [22]. But the available archive up till now is that one for sentinel2-

L1C data, so the algorithm is built only with this type of data in this service.  

There are some parameters needed to be involved in WFS request shown in the table 

below. 

 

WSF parameter Information 

data collection  

Required 

Type the mission which to return the results. 

Here it must be -> DataCollection.SENTINEL2_L1C. 

bbox 

Required 

The bounding box of the requested image must be defined by 

four coordinates in the specified coordinate reference system. 

The coordinates should be separated by commas and represent 

the top-left and bottom-right corners of the bounding box. 

time  

Optional 

The time for which to return the results.  

The default: none (the last valid image is returned). 

CRS 

Optional  

The coordinate reference system (CRS) in which the bounding 

box (BBOX) is defined and in which the resulting image will be 

returned.  

The default: "EPSG:3857".  

maxcc 

Optional 

The maximum cloud coverage of returned images. 

CH4 Table 4 : Table Standard WFS parameters [21] 
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Another request must follow WFS request. It is AwsTileRequest 

AwsTile 

parameter 

Information 

data collection  

Required 

Type the mission which returns the results. 

Here it must be -> DataCollection.SENTINEL2_L1C. 

time    

Optional   

Sentinel-2 tile time can be accessed from ESA tile ID which 

get from the result of WFS. 

tile_name 

Required 

Sentinel-2 tile_name can be accessed from ESA tile ID which 

get from the result of WFS. 

 

aws_index 

Required 

the last number in tile AWS path which can be accessed from 

ESA tile ID which get from the result of WFS. 

Bands 

Optional 

Specifying bands among 13 available bands of sentinel2-L1C.  

The default: all 13 bands -> [“B01”, “B02”, “B03”, “B04”, 

“B05”, “B06”, “B07”, “B08”, “B8A”, “B09”, “B10”, “B11”, 

“B12”].  

metafiles  

Optional 

Specifying among available metafiles of sentinel2-L1C 

The default: none. 

maxcc 

Optional 

The maximum cloud coverage of returned images. 

CH4 Table 5: Aws Tile parameters [22] 

 

3.3.1 Characteristics of the returned tiles with WFS 

The requests of WFS return to each tile.  

1. The selected bands based on the request with  

o extension -> jp2  

o size -> 5490X5490  

2. The selected metafiles  

3.3.2 Disadvantage of request with WFS 

According to the input coordinates of the area of interest, the request tries to get the 

tile for this given coordinate and if there is not, it tries to get the tile of the closest 

coordinate that is unlike the request with WMS, which returns the image of the 

selected coordinate. To solve this problem, it’s recommended to co-register of the 

obtained images of WFS request with images of WMS request. So, if the tiles as 

required, the images exist and if the tiles are different than the required, it returns 

black images, without information, as they are spatially different. 

3.4 The algorithm 
The algorithm consists of two main parts.  

1. Data Collection 

a. Request one type of data collection  

b. Request two types of data collection  
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2. Data Preparation  

a. Data Co-registration 

b. Data tilling  

3.4.1 Data Collection 

The algorithm provides two flows to cover most of the use cases. 

3.4.1.1 Request one type of data collection  

This algorithm includes the following collection: 

1.  Sentinel1 images -> VV and VH bands  

2. Sentinel2_L1C images -> True color 

3. Sentinel2_L2A images -> True color 

4. Sentinel2_L1C images -> Separated bands 

5.  
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Figure 10: The workflow of request one type of data collection. CH4 
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3.4.1.1 Request two types of data collection  

This algorithm includes the same previous collection with the same 

characteristics of every two returned images from different collections which 

have been taken at the same time or in the available closest time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Data Preparation 

3.4.2.1 Data Co-registration  

The quality of remotely sensed data can be negatively impacted by a range of 

factors, such as atmospheric conditions, the rotation of the Earth, the motion of 

satellites or aircraft, and the curvature of the Earth. To address these issues, 

Image registration, the process of transforming multiple sets of images or 

spatially referenced data into a single coordinate system, is used. If image data 

is acquired at different times or from different sources, they may be registered in 

different coordinate systems, which must be co-registered into a single 

coordinate system for subsequent analyses [26]. Accurate registration is crucial 

for change detection techniques, which may produce false differences if 

misaligned. To ensure maximum spatial fidelity, it is recommended to co-

register all data and geo-reference it using ground control points [1]. 

In order to automize QGIS Co-registration plugin, which requires manual 

effort to make the images registered, the algorithm uses the python QGIS 

plugin Repository, the following steps are executed by the algorithm: 

1.  Converting the target image using a pixel alignment process based on a 

reference image and then generating a new raster file based on the target 

image with all properties from the reference [27]. 

2.  Providing automatically Co-registration of downloaded data using rasterio 

library, a python library allows access to geospatial raster data [24], and gdal 

library, a translator library for raster and vector geospatial data formats [25].  

From the request of two types of data collection, two types of images are 

provided; one will be used as a reference image and the other will be used as a 

target image based on user request as the workflow in figure 12 shown. 

 

 
 

Collection1 

 

Collection2 

 

Co-registration 

with rasterio Tiled images.tiff 

 

Input 

 

Output 

 

Process 

 

In the closest time 

 

Tilling     

with GDAL 

Storage on AWS S3 

 
CH 4 Figure 11: The workflow of request two types of data collection. 
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3.4.2.2 Data Tilling  

Data Tiling is a process to split a large area into smaller ones [28]. 

Based on the user input, the algorithm patches a registered image into smaller ones with 

each having width and height predetermined in the request. Later tilling the data 

technique will be shown. 

 

3.5 The user interface  
The user has the right to choose some interesting parameters for the images that will be 

downloaded. 

These parameters are: 

1. Area of interest as a polygon shape  

2. Type of available data collection provided in the algorithm. 

3. Time range of the returned images; the start time and the end time  

4. Type of available bands of data collection provided in the algorithm.  

5. Number of the returned images  

6. Number of maximum cloud coverage 

To prepare the request, the request should be sent in JSON file format to an input bucket 

on AWS and the images will be downloaded automatically on an output bucket. 

So firstly, what is the JSON file? And what is the body Schema to send the request? 

JSON, abbreviated as JavaScript Object Notation, is a syntax for defining data 

interchange formats that is both lightweight and text based. It is independent of any 

particular programming language, although it originated from ECMAScript. JSON 

provides a concise set of structuring rules that enable the representation of structured 

data in a portable format. [19] 

 

 

 

CH4 Figure 12: The workflow of data co-registration 
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 3.5.1 Body Schema for JSON file 

There are two schemas depending on the user request: one type of data collection or 

two types of data collection: 
 

 

 

1. For request one type of data collection  

{“type": "Feature", 

  "geometry": { 

 "type": "Polygon", 

 "coordinates": [………] 

}, 

  "properties": { 

   "task": “………”, 

   "Start_date": “………”, 

   "End_date": “………”, 

   "limit": ………, 

   "band": ………, 

   "maxcc": ………, 

   "analysis": { 

    "type": "None", 

    "object": "None" 

   }}} 

 

2. For request two types of data collection  

{“type": "Feature", 

  "geometry": { 
 "type": "Polygon", 

 "coordinates": [……………] 

}, 
  "collection": [ 

  { 

   "task1": "………", 
   "Start_date": "………", 

   "End_date": "………", 
   "limit": ………, 

   "band": ………, 

   "maxcc": ……… 
  }, 

  { 

   "task2": "………", 
   "Start_date": "dependent", 

   "End_date": "task1", 

   "limit":  "null", 
   "band": ………, 

   "maxcc": ……… 

  } 
  ], 

   "preparation": [ 

  { 
     "task": "Coregistration", 

     "reference": " task1", 

     "target": " task2" 
  }, 

  { 

    "task": "Tiling", 
    "width": ………, 

    "height": ……… 

  } ], 
   "analysis": { 

    "type": "None", 

    "object": "None" 

  }} 

 

Figure 13: JSON file schema for one type of data collection  CH4 

Figure14: JSON file schema for two types of data collection CH .4 
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3.5.2 Summary of JSON file’s parameters   

 

 

 

 

 

 

 

  

coordinates 

 

Task 

 

start _date 

 

end_date 

 

band 
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maxcc 
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h 
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Result 
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shape 

 
Data collection 
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Images 
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Maximu

m cloud 
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h of 

tiled 
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of tiled 

image 

 

 

 

 

 

Available 

data 
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CH4 Table 6 : Summary of JSON file’s parameters   
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4. Results  
After creating JSON file as previously explained, the results here are the results of 

running the JSON file on the server which already contains the algorithm. Each result 

here responds to examples in the JSON file’s parameter in table6. 

4.1 One type of data collection 
 

 

 

 

 

 

 

 

 

 

 

CH4 Figure15: SENTINEL1 Image taken on 2023-04-01 15:56:36 
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Figure 16: SENTINEL2_L1C Image taken on 2023-04-13 08:42:07  

CH44 

Figure 17: SENTINEL2_L2A Image taken on 2023-04-13 08:42:07 CH4.  
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CH4 Figure 18: Sentinel2_L1C image separated bands taken on 2023-05-23: resolution of (a) B01, (b) B02 and (c) 

B05 are 60m, 10m and 20m respectively.  And (d), (e) and (f) images are small areas maximized from the 

downloaded bands. 
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4.2 Two types of data collection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Co-registered Sentinel2_L1C image with Sentinel1 as reference CH4 5 

CH4 Figure 22: Tiles (128X128) of Co-registered Sentinel2_L1C 

CH4 Figure 20: Sentinel2_L1C image. Figure 19: Sentinel1 Image CH4 
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CH4 Figure 25:CO-registed Sentinel1 image with Sentinel12_LIC as reference 1  

CH4 Figure 26: Tiles (256x256) of Co-registered Sentinel1 image. 

CH4 Figure23: Sentinel2_LIC image.  CH4 Figure 24: Sentinel Image 
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5.Conclusion  
In conclusion, this thesis has presented a comprehensive workflow for gathering and 

post-processing satellite imagery datasets. The workflow includes various stages, such 

as data acquisition, pre-processing, co-registration, and patching. Through the 

implementation of this workflow, it is possible to automate many of the time-

consuming and resource-intensive tasks associated with satellite imagery processing, 

enabling faster and more efficient analysis of the data. The workflow has been 

demonstrated on a range of satellite imagery datasets, and the results have shown the 

effectiveness and accuracy of the automated approach. 

Overall, this thesis has demonstrated the importance of satellite imagery datasets in 

various fields and the potential benefits of automating the post-processing of these 

datasets. By providing a detailed workflow, this thesis aimed to contribute to the 

development of more efficient and effective methods for analyzing satellite imagery 

data. It is hoped that this thesis will inspire further research in this area and help to 

advance the field of remote sensing, enabling us to better understand and monitor our 

planet's changing landscape. 
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5.CROP CLASSIFICATION 

 

Abstract 

Agriculture has always thrived on innovation, changing as the world changes. Today’s 

agriculture requires a different kind of innovation to meet the demands of a growing, 

increasingly urban population, and the pressures of a changing climate. These factors 

place importance on an integrated approach to regenerative agriculture that optimizes 

the use of natural resources, farm inputs, and farmers’ return on investment. 

Agricultural monitoring plays a crucial role in ensuring food security, optimizing 

resource management, and understanding the dynamics of crop production. The need 

for accurate and up-to-date crop type maps is paramount. These maps provide valuable 

information about the spatial distribution and extent of specific crops, such as rice, 

almond, and corn, enabling better decision-making and planning for agricultural 

activities. The availability of improved operational global agricultural monitoring 

systems offers significant benefits to stakeholders involved in agriculture and land 

management. These maps provide valuable insights into the spatial distribution of 

crops, allowing policymakers, farmers, and researchers to optimize resource allocation, 

monitor crop health, detect anomalies or pest outbreaks, and assess the impact of 

climate change on agricultural productivity. All season, every season, in every country 

around the world, farmers collect and evaluate large amounts of data. From seed 

varieties planted to inputs applied to harvested to the success of operational practices, 

farmer increasingly rely on data science and the advent of digital technologies as well 

as new opportunities to use that data to improve operations and outcomes. Our farmers 

and scientists consider the complex interactions between the growing environment, 

seed genetics and farm management practices in their quest to unlock the future of 

prescriptive agriculture. In the future, leveraging agronomic modeling techniques in 

partnership with farmers will drive the adoption of the right products, applied at the 

right times, and in the right ways to optimize farm sustainability and productivity. We 

believe that supporting farmers around the world as they adopt digital tools - and the 

advanced insights that come from them - is the key to farming’s future. Next generation 

agricultural solutions, where leading seed genetics are paired with crop protection 

products with unparalleled safety and an underlying platform in our map’s suite of 

digital tools, is what will unlock the sustainable farm productivity needed to feed a 

changing world. 

1. Introduction 

With ongoing global population growth and the corresponding rise in demand for food, 

feed, fiber, and fuel, agriculture takes a key role to sustain future livelihood. 

Competition for land within the agricultural sector, but also with other land uses, can 

lead to agricultural intensification and expansion, often with negative impacts on 

ecosystems, like deforestation and biodiversity. The Global Rice map or any other field 

is an interactive tool that showcases the worldwide distribution of rice, a crucial source 

of nutrition. It plays a vital role in forecasting, monitoring, and assessing rice 

production at local, regional, and national levels. This allows us to evaluate the efficient 

use of limited resources such as land, water, and fertilizers, understand the impact of 

climate on rice cultivation, and address food security concerns. [1] Rice is one of the 
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major crops on earth, feeding more than half of the world’s population, and its 

cultivation area also exceeds 12 % of the world’s cultivated land, playing a crucial 

function in the food security of human beings. Moreover, rice planting has far-reaching 

effects on water consumption and global warming. Therefore, early access to the spatial 

distribution of rice is critical for agricultural systems and food security. This search 

aims to explore the advancements made in operational global agricultural monitoring 

techniques specifically focused on rice, almond, and corn crops in California and USA. 

The utilization of satellite imagery and remote sensing data offers an efficient and 

reliable means of capturing essential agricultural information over large areas. By 

harnessing these technologies, researchers and organizations have made significant 

strides in improving the accuracy and timeliness of crop type mapping, facilitating 

better agricultural management practices, and supporting policy formulation.  The main 

goal of the crop type classification is to create a map/image where each point on it will 

have a class of what is growing there. Numerous studies have confirmed that remote 

sensing (RS) technology provides an accurate, fast, and low-consumption technical 

approach for paddy rice mapping (PRM). The RS images used for PRM generally 

include optical images (OIs) and SAR images (SARIs). Different types of vegetation 

indices (VIs) constructed using spectral information, such as the normalized difference 

vegetation index (NDVI), The Normalized Difference Water Index (NDWI) is used to 

highlight open water features in a satellite image, allowing a water body to “stand out” 

against the soil and vegetation. 

2. Literature Review 

Paper [1] is about the use of biophysical variables and remote sensing data for land 

cover and crop type classification. It explains the importance of these variables in 

capturing vegetation dynamics and improving classification accuracy. The document 

discusses the extraction and integration of high-resolution multi-sensor biophysical 

time series and compares their performance with spectral information and NDVI. It also 

explores the impact of different acquisition dates on classification accuracy and the 

optimal length of time series for accurate classification. The document provides insights 

into the potential of using biophysical variables for land cover mapping and crop 

monitoring. Overall, it highlights the importance of temporal trajectory and the 

potential benefits of using biophysical variables in classification tasks. This article 

investigates the potential of structural biophysical variables as common parameters to 

consistently combine multi-sensor time series and to exploit them for land/crop cover 

classification. Artificial neural networks were trained based on a radiative transfer 

model in order to retrieve high resolution LAI, FAPAR and FCOVER from Landsat-8 

and SPOT-4. The correlation coefficients between field measurements and the retrieved 

biophysical variables were 0.83, 0.85 and 0.79 for LAI, FAPAR and FCOVER, 

respectively. The retrieved biophysical variables’ time series displayed consistent 

average temporal trajectories, even though the class variability and signal-to-noise ratio 

increased compared to NDVI. Six random forest classifiers were trained and applied 

along the season with different inputs: spectral bands, NDVI, as well as FAPAR, LAI 

and FCOVER, separately and jointly. Classifications with structural biophysical 

variables reached end-of-season overall accuracies ranging from 73%–76% when used 

alone and 77% when used jointly. This corresponds to 90% and 95% of the accuracy 

level achieved with the spectral bands and NDVI. FCOVER appears to be the most 

promising biophysical variable for classification. When assuming that the cropland 

extent is known, crop type classification reaches 89% with spectral information, 87% 

file:///J:/Crop%20Type%20Maps.docx%23R1
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with the NDVI and 81%–84% with biophysical variables. Six random forest classifiers 

were trained along the season with the spectral bands (Bands-C), NDVI (NDVI-C) and 

three biophysical variables separately (LAI-C, FAPAR-C and FCOVER-C) and jointly 

(BPV-C). End of season maps show akin general patterns for the six classifiers. 

Nevertheless, a salt and pepper effect are more visible on maps derived from 

biophysical variables than on the NDVI-C and Bands-C maps (Figure 29). 

 

 

 

 

 

In Paper [2], multi-temporal Sentinel-2 data acquired in the growing season in 2019 

were applied to the random forest algorithm to generate the crop classification map at 

10 m spatial resolution for the Shiyang River Basin. Four experiments with different 

combinations of feature sets were carried out to explore which Sentinel-2 information 

was more effective for higher crop classification accuracy. The results showed that the 

augment of multi-spectral and multi-temporal information of Sentinel-2 improved the 

accuracy of crop classification remarkably, and the improvement was firmly related to 

strategies of feature selections. Compared with other bands, red-edge band 1 (RE-1) 

and shortwave-infrared band 1 (SWIR-1) of Sentinel-2 showed a higher competence in 

crop classification. The combined application of images in the early, middle, and late 

crop growth stage is significant for achieving optimal performance. A relatively 

accurate classification (overall accuracy = 0.94) was obtained by utilizing the pivotal 

spectral bands and dates of image. In addition, a crop map with a satisfied accuracy 

(overall accuracy > 0.9) could be generated as early as late July. This study gave an 

inspiration in selecting targeted spectral bands and period of images for acquiring more 

accurate and timelier crop map. The proposed method could be transferred to other arid 

CH 5 Figure 1: End-of-season maps for the six classifiers: (a) Band-C; (b) NDVI-C; (c) 

LAI-C; (d) FAPAR-C; (e) FCOVER-C; (f) BPV-C. Bands-C provides the most accurate 

classification accuracy, followed by NDVI-C and the biophysical variables. The pepper 

and salt are more visible on maps derived from biophysical variables than on the NDVI-

C and Bands-C maps. This ought to be related to the lower SNR observed for 

biophysical variables. 
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areas with similar agriculture structure and crop phenology. In this study, they chose 

the RF model [4] for crop classification. The RF algorithm is an efficient algorithm 

based on an ensemble idea proposed by Breiman that consists of multiple decision trees 

or classified regression trees. Random forest algorithm can effectively reduce model 

overfitting by introducing randomness of training samples and classification features. 

Several subsamples are extracted from training samples by a random sampling method 

which is a bootstrapping method. The scikit–learn package RandomForestClassifier in 

Python was used in our work to implement the RF algorithm [5]. Two predominant 

parameters determine the performance of the algorithm. One is the number of decision 

trees. Previous studies suggested the classification error or overall accuracy converges 

with the increase of the number of trees [6,7]. they tested the value of 100, 300, 500 

and 700 and found that 700 did not significantly improve the accuracy. Taking into 

account the computing time, they finally selected 500 as the number of decision trees 

to permit the convergence of the out-of-bag error. Another parameter is the number of 

features involved in the training of each decision tree. It was set to the squared root of 

number of the input features as lots of literature recommended [8]. With multi-temporal 

information, the overall accuracy increased to over 0.94 for all the spectral 

combinations and the highest overall accuracy was 0.95 as showed in table [1]. 

 

CH 5 Table 1: Best combinations for different groups when using spectral combinations with full time 

series. 

Paper [3], They provide the first crop type semantic segmentation dataset of small 

holder farms, specifically in Ghana and South Sudan. They are also the first to utilize 

high resolution, high frequency satellite data in segmenting small holder farms. Despite 

the challenges, we achieve an average F1 score and overall accuracy of 57.3 and 60.9% 

in Ghana and 69.7 and 85.3% in South Sudan. Additionally, our approach outperforms 

the state-of-the-art method in a data-rich setting of Germany by over 8 points in F1 and 

6 points in accuracy. They compare performance between a 3D U-Net and a model that 

incorporates both CNNs and RNNs for semantic segmentation of multi-temporal, 

multi-spatial satellite images. To gain further insight into the sequence models and 

contributing attributes, they explore ablation studies and compare with a random forest 

baseline. They predict crop type with reasonable performance in Ghana and South 

Sudan where data is limited and of poor quality due to high cloud cover, class 

imbalance, and lack of labels. When applied on a large dataset in Germany, they surpass 

state-ofthe-art performance on this task. They release the full datasets and code 

repository and hope to encourage the development of crop type segmentation systems 

for small holder farms. 
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CH 5 Figure 2: The 2D U-Net + CLSTM model architecture used in this study; “nc” denotes number of 

output classes. 

 

3. Methodology 
3.1 Dataset and Features. 

Locations and labels: Our dataset are made up of sparse ground truth labels of crop 

fields in USA, California, and Egypt. Ground truth labels consist of geo- referenced 

polygons, where each polygon represents an agricultural field boundary with a crop 

type label. we use Labels data from CropScape for the 2021 growing season. The most 

field in California is Rice and the most field in USA is corn So We build two Models 

one use to predict Rice and other to predict corn. 

 

CH 5 Figure 3 the first 5 crops in California in 2021. 

As we shown in figure 3 the first 5 crops in California in 2021.  In California, focus on 

rice, we replace all crops as background. 

https://nassgeodata.gmu.edu/CropScape/
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CH 5 Figure 4: Sentine-l2 rgb & ref image in califorina. 

 

In the USA, we focus on corn; we replace all crops as background. 

 

CH 5 Figure 5: Sentine-l2 rgb & ref image in USA. 

 

Input features: We create inputs to the model by mapping S1 and S2 to the labeled 

locations within our dataset. As input features, we use ten S2 bands (all bands except 

1, 9 and 10), and three S1 bands. Both Sentinel satellites have a 20m spatial resolution. 

With high cloud cover and small field sizes, we believe incorporating Planet imagery 

will be beneficial. In experiments we also use Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Vegetation Index (NDWI) and Normalized Difference 

Moisture Index (NDMI). 
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CH 5 Figure 6: Bands Rice Signiture. 

 

 

CH 5 Figure 7 Bands Corn Signiture. 
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3.2 Methods. 

After downloading the S2 & S1, we co-register S1 with S2 and co-register label with 

S2 as both have different resolutions. Next step we resample all bands into same 

resolution 20m. Next step we combine all bands and merge S2&S1. Next step we tile 

the images into small patches to be prepared for the AI Model (128,128). Now, Dataset 

should be (1764, 128, 128, 13). 1764 this number of Batches, and x, y (128,128), and 

13 is the number of bands. Now, the Dataset is prepared. So, we will build models.  But 

Before we Talk about U-Net we talk about some definition. 

3.2.1 Neural Network. 

An artificial neuron network is a computational model that mimics the way nerve cells 

work in the human brain. There are more complicated and high-end models in the DL 

approach. However, ANN is a vital element in all the models in DL. 

 

CH 5 Figure 8: neural network 

 

CH 5 Figure 9: neural network with hidden layers  

3.2.2. Convolutional Neural Networks 

A Convolutional Neural Network, also known as CNN or Conv-Net, is a class of neural 

networks that specializes in processing data that has a grid-like topology, such as an 

image. A digital image is a binary representation of visual data. It contains a series of 

pixels arranged in a grid-like fashion that contains pixel values to denote how bright 

and what color each pixel should be. 
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CH 5 Figure 10: Convolutional Neural Networks 

3.2.3 Convolutional Neural Network Architecture 

CNN typically has three layers: a convolutional layer, a pooling layer, and a fully 

connected layer. 

 

CH 5 Figure 11: Convolutional Neural Network Architecture 

3.2.4 Convolution Layer 

The convolution layer is the core building block of CNN. It carries the main portion of 

the network’s computational load. This layer performs a dot product between two 

matrices, where one matrix is the set of learnable parameters otherwise known as a 

kernel, and the other matrix is the restricted portion of the receptive field. The kernel is 

spatially smaller than an image but is more in-depth. This means that, if the image is 

composed of three (RGB) channels, the kernel height and width will be spatially small, 

but the depth extends up to all three channels. 
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CH 5 Figure 12: Convolutional layer  

3.2.5 Pooling Layer 

The pooling layer replaces the output of the network at certain locations by deriving a 

summary statistic of the nearby outputs. This helps in reducing the spatial size of the 

representation, which decreases the required amount of computation and weights. The 

pooling operation is processed on every slice of the representation individually. There 

are several pooling functions such as the average of the rectangular neighborhood, L2 

norm of the rectangular neighborhood, and a weighted average based on the distance 

from the central pixel. However, the most popular process is max pooling, which 

reports the maximum output from the neighborhood. 
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CH 5 Figure 13: Pooling Operation. 

3.2.6 Fully Connected Layer. 

Neurons in this layer have full connectivity with all neurons in the preceding and 

succeeding layer as seen in regular FCNN. This is why it can be computed as usual by 

a matrix multiplication followed by a bias effect. The FC layer helps to map the 

representation between the input and the output. 

3.2.7 Non-Linearity Layers 

Since convolution is a linear operation and images are far from linear, non-linearity 

layers are often placed directly after the convolutional layer to introduce non-linearity 

to the activation map. There are several types of non-linear operations, the popular ones 

being: 

3.2.7.1 Sigmoid 

The sigmoid non-linearity has the mathematical form σ(κ) = 1/(1+e¯κ). It takes a real-

valued number and “squashes” it into a range between 0 and 1. However, a very 

undesirable property of sigmoid is that when the activation is at either tail, the gradient 

becomes almost zero. If the local gradient becomes very small, then in backpropagation 

it will effectively “kill” the gradient. Also, if the data coming into the neuron is always 

positive, then the output of sigmoid will be either all positives or all negatives, resulting 

in a zig-zag dynamic of gradient updates for weight. 

       

CH 5 Figure 14: Sigmoid Function. 
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3.2.7.2. Tanh 

Tanh squashes a real-valued number to the range [-1, 1]. Like sigmoid, the activation 

saturates, but — unlike the sigmoid neurons — its output is zero centered. 

 

CH 5 Figure 15: Sigmoid & Tanh. 

3.2.7.3. ReLU 

The Rectified Linear Unit (ReLU) has become very popular in the last few years. It 

computes the function ƒ(κ)=max (0, κ). In other words, the activation is simply 

threshold at zero. In comparison to sigmoid and tanh, ReLU is more reliable and 

accelerates the convergence by six times. Unfortunately, a con is that ReLU can be 

fragile during training. A large gradient flowing through it can update it in such a way 

that the neuron will never get further updated. However, we can work on this by setting 

a [roper learning rate. 

 

CH 5 Figure 16: Relu 

In this work, we explore segmentation (2D U-Net). It evolved from the traditional 

convolutional neural network, was first designed, and applied in 2015 to process 

biomedical images. As a general convolutional neural network focuses its task on image 

classification, where input is an image and output are one label, but in this case, it 

requires us not only to distinguish whether there is a crop, but also to localize the area 

of this crop. 

U-Net is dedicated to solving this problem. The reason it can localize and distinguish 

borders is by doing classification on every pixel, so the input and output share the same 

size. 
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CH 5 Figure 17: U-Net architecture 

3.2.8 Contracting Path 

The contracting path follows the formula: 

conv_layer1 -> conv_layer2 -> max_pooling -> dropout(optional) 

 

CH 5 Figure 18: two convolutional layers. 

Notice that each process constitutes two convolutional layers, and the number of 

channel changes from 1 → 64, as convolution process will increase the depth of the 

image. The red arrow pointing down is the max pooling process which halves downsize 

of image (the size reduced from 128x128 → 64x64 is due to padding issues, but the 

implementation here uses padding= “same”). The process is repeated 3 more times: 
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        CH 5 Figure 19: Contracting Path 

Now, we reach the bottle neck: The image at this moment has been resized to 8x8x256. 

Now let’s get to the expansive path. 

3.2.9 Expansive Path 

In the expansive path, the image is going to be upsized to its original size. The formula 

follows: 

conv_2d_transpose -> concatenate -> conv_layer1 -> conv_layer2 

 

CH 5 Figure 21: Expansive Path. 

CH 5 Figure 20 bottle neck. 
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Transposed convolution is an up-sampling technic that expands the size of images. 

Basically, it does some padding on the original image followed by a convolution 

operation. After the transposed convolution, the image is upsized from 8x8x256 → 

16x16x128, and then, this image is concatenated with the corresponding image from 

the contracting path and together makes an image of size 16x16x128. The reason here 

is to combine the information from the previous layers in order to get a more precise 

prediction. The last layer is a convolution layer with 1 filter of size 1x1. 

3.2.10 Hyperparameters 

Models were trained using a weighted combination of cross-entropy loss. Adam was 

used for parameter optimization. All the models were trained for 40 or 20 epochs 

depending on experiment to avoid over fitting. We applied dropout but did not modify 

it further in all experiments. 

4. Analysis 

4.1 Model 1 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for optimization. All the models were trained for 25 epochs total. Start as 64 filter! 

                

CH 5 Figure 22: Code U-net with python. 
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CH 5 Table 2: Model 1 

4.2 Model 2 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for parameter optimization. All the models were trained for 25 epochs total. Start 

as 32 filter. 

 

 

CH 5 Table 3: Model 2 

4.3 Model 3 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for optimization (starting value 0.003). All the models were trained for 45 epochs 

total. Patch size = 10, start filter as 16. 

 

 

CH 5 Table 4: Model 3 
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4.4 Model 4 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for optimization. All the models were trained for 41 epochs total.  Patch size = 16, 

start filter as 16. 

 

 

CH 5 Table 5: Model 4 

After show the accuracy of model 4. We saw that the model predicts perfectly. 

 

CH 5 Figure 23: Model 4 prediction accuracy 

4.5 Experiment 1: This Experiment doing for Corn model with Sentinel-2 only. 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for optimization. All the models were trained for 27 epochs total.  Patch size = 16, 

start filter as 16. 



 
Page | 67 

 

 

 

 

CH 5 Table 6: Experiment 1 for corn model with S2. 

As we show this model gives loss: 0.1162 - accuracy: 0.9560 - jaccard_coef: 0.8498. 

This result is good. Now, we predict it in a new region. We saw that the model predicts 

perfectly as showed in Table12. 

 

 

CH 5 Figure 24: Experiment 1 Corn Model Prediction on new region using S2. 
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4.6 Experiment 2: this Experiment is done for Corn model with Sentinel-2 & Sentinel-

1 only. We chose the same hyperparameter of Sentinel-2model and compared them. 

Models were trained using a weighted combination binary_crossentropy. Adam was 

used for optimization. All the models were trained for 27 epochs total.  Patch size = 16, 

start filter as 16. 

 

 

 

CH 5 Table 7: Experiment 2 for corn model with S1 and S2 

As we show this model gives loss: 0.1090 - accuracy: 0.9587 - jaccard_coef: 0.8586. 

This result is good. Now, we predict it in a new region. 

 

 

CH 5 Figure 25: Experiment 2 Corn model prediction on new region using S1 and S2. 
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4.7 Experiment 3: we are done also some experiments. We find that including S1 

marginally improves performance. S1 features are indicative of surface scattering, and 

it may be that crop types within small fields do not have enough differentiating signal 

in these bands. We find including additional indices such as NDVI, NVWI and NDMI 

marginally improve performance. 

Month S2 S2&S1 S1&S2&NDVI&NVWI&NDMI 

May 0.090% 1.62% 0.39% 

June 7.96% 27.12% 30.17% 

September 8.91% 27.85% 17.65% 

August 84.98% 85.86% 86.02% 

CH 5 Table 8: Experiment 3 percentage of Jaccard coefficient. 

Experiment in IOWA State.  

 

CH 5 Figure 26: IOWA State 

 

CH 5 Figure 27: ref & our prediction image. 

 

After Experiment in IOWA State, we show good result so we can tell that the model 

we build it in small area (USA) can predict large area (IOWA State). 
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CH 5 Figure 28: accuracy of model on IOWA state. 

4.8 Experiment 4: this Experiment is doing for Rice model Sentinel-2 only. 

  

 

CH 5 Figure 29 Loss & Accuracy for Rice model.  6  
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CH 5 Figure 30: Rice Model Prediction Accuracy. 

 

4.9 Experiment 5 In Egypt: this Experiment doing for Corn model Sentinel-2 & 

Sentinel-1. 
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CH 5 Figure 31: Egypt-Corn-map. 

 

CH 5 Figure 32: Fayoum-Egypt_Corn Map 

As we show, the model predicted Egypt rejoin, but the accuracy is not sufficient 

because model trained in USA rejoin. 

 

5. Conclusion 

In conclusion, with ongoing global population growth and the corresponding rise in 

demand for food, feed, fiber, and fuel, agriculture plays a key role in sustaining future 

livelihoods. However, competition for land within the agricultural sector, as well as 

with other land uses, can lead to negative impacts on ecosystems, such as deforestation 

and biodiversity loss. The Global Rice map, and other similar tools, is an interactive 

platform that allows for the worldwide distribution of rice to be showcased. This map 
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plays a vital role in forecasting, monitoring, and assessing rice production at local, 

regional, and national levels. By providing early access to the spatial distribution of 

rice, it enables better agricultural management practices, supports policy formulation, 

and helps to address food security concerns. Rice is a major crop that feeds more than 

half of the world's population and covers over 12% of the world's cultivated land. Its 

cultivation has far-reaching effects on water consumption and global warming. 

Therefore, accurate and timely mapping of rice cultivation is critical for agricultural 

systems and food security. Remote sensing technology provides an efficient and 

reliable means of capturing essential agricultural information over large areas. By 

utilizing this technology, researchers and organizations have made significant strides in 

improving the accuracy and timeliness of crop type mapping, particularly for rice, 

almond, and corn crops in California and the USA. The main goal of crop type 

classification is to create a map or image where each point is classified by what is 

growing there. Studies have confirmed that remote sensing technology, including 

different types of vegetation indices, such as the normalized difference vegetation index 

(NDVI) and the normalized difference water index (NDWI), provide an accurate, fast, 

and low-consumption technical approach for paddy rice mapping. In conclusion, 

remote sensing technology has shown great potential in improving agricultural 

monitoring techniques, particularly in mapping crop types such as rice, almond, and 

corn. These advancements have facilitated better agricultural management practices, 

supported policy formulation, and helped address food security concerns, ultimately 

contributing to the sustainable development of agriculture and its critical role in 

sustaining future livelihoods. The future plan will be: 

• Train Model in July and September. 

• Develop our model to predict any rejoin in world. 

• Release global Map in 2023. 
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6 Agriculture patterns detection from Aerial images 
6.1.  Abstract 

Precision agriculture, an emerging field, aims to enhance crop production efficiency 

using technological tools. Aerial imagery, including satellite and drone images, has 

become an indispensable asset for various applications, including crisis management. 

Deep learning methods have significantly advanced relief efforts through recognition, 

detection, and other non-trivial applications. This research focuses on the application 

of image semantic segmentation to identify anomalies in crop patterns, such as weeds, 

dryness, and water locations. By labeling every pixel, this technique enables precise 

detection of affected areas in the field. Various models and techniques for image 

segmentation are compared to determine their effectiveness in accurately identifying 

anomalies. The study also explores the integration of remote sensing, weed 

management, decision support systems, and traceability to optimize crop management 

practices. Additionally, the utilization of multispectral images obtained from unmanned 

aerial systems (UASs) is being investigated. The comprehensive framework developed 

combines aerial imagery, deep learning, and other agricultural technologies, with the 

goal of improving crop yield while minimizing resource utilization. The results of this 

research have far-reaching implications for the agricultural industry, providing a 

pathway towards sustainable and efficient crop production practices  . This study 

contributes to the advancement of precision agriculture, enabling the detection of 

anomalies in crop patterns through the synergy of aerial imagery and deep learning 

techniques. The application of these methods holds exciting prospects for optimizing 

agricultural practices, ultimately leading to increased productivity and resource 

efficiency.  

6.2. Introduction 

Agriculture has always played a vital role in the global economy, sustaining the world's 

population, and supporting numerous countries' economies. However, the ever-growing 

demand for food, coupled with environmental challenges and limited resources, has 

necessitated the development of more efficient and sustainable farming practices. In 

this context, precision agriculture has emerged as a promising solution to optimize crop 

production, reduce resource wastage, and mitigate environmental impact. Precision 

agriculture leverages advanced technologies, including computer vision and deep 

learning, to enable accurate and detailed monitoring of crops and fields. By harnessing 

the power of computer vision, farmers and agricultural experts can gain valuable 

insights into plant health, growth patterns, and field anomalies, facilitating timely 

intervention and informed decision-making. One of the primary motivations behind the 

pursuit of precision agriculture is the need to enhance productivity and increase crop 

yields. With global food demand projected to rise significantly in the coming years, it 

is imperative to adopt strategies that can boost agricultural output without 

compromising sustainability. Computer vision techniques provide a non-intrusive and 

scalable approach to gather data on plant conditions, enabling farmers to optimize 

resource allocation, tailor treatments, and improve overall crop management practices. 

Field anomalies pose significant challenges to farmers, as they can negatively impact 

crop health and productivity. Weeds, for instance, compete with crops for resources and 

can significantly reduce yields if not promptly identified and controlled. Similarly, 

issues such as drought stress, nutrient deficiencies, and planter skips can result in 
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irregular plant growth and hinder optimal crop development. Detecting and addressing 

these anomalies in a timely manner is crucial for minimizing losses and ensuring 

efficient resource utilization. The traditional approach of manual field scouting and 

inspection by experts is time-consuming, subjective, and often insufficient for large-

scale agricultural operations. Computer vision technology offers a promising 

alternative, enabling automated and objective analysis of plant images captured from 

drones, satellites, or ground-based sensors. By leveraging machine learning algorithms, 

computer vision systems can detect and classify weeds, identify stress patterns, and 

quantify the extent of planter skips, providing farmers with actionable information for 

targeted interventions. Furthermore, the consequences of undetected or inadequately 

addressed field anomalies can extend beyond reduced yields. Ineffective weed control 

strategies may lead to the development of herbicide-resistant weed populations, 

jeopardizing long-term crop productivity and increasing reliance on costly 

interventions. Similarly, overlooking signs of drought stress or nutrient deficiencies can 

result in irreversible damage to crops, impacting not only the current season's harvest 

but also the long-term sustainability of agricultural systems. In this research paper, we 

explore the potential of computer vision techniques in enabling precision agriculture 

and addressing field anomalies. We aim to provide a comprehensive overview of the 

advancements in agricultural computer vision, discuss the challenges associated with 

field anomaly detection, and present potential solutions and research directions. By 

harnessing the power of computer vision technology, we can revolutionize crop 

monitoring, optimize resource utilization, and mitigate the risks posed by field 

anomalies, ultimately contributing to sustainable and efficient agriculture practices on 

a global scale. 

6.3. Literature Review 

6.3.1.  Introduction 

In this section, we will explore the historical progression of semantic segmentation, 

examining key milestones and breakthroughs that have shaped the field. Additionally, 

we will delve into the fundamental concepts of artificial intelligence (AI) and machine 

learning (ML), which underpin semantic segmentation algorithms. Understanding the 

role of AI and ML in this context is essential for comprehending the advancements 

made in semantic segmentation.  Furthermore, this review will explore the application 

of deep learning techniques in semantic segmentation. Deep learning, specifically 

convolutional neural networks (CNNs), has proven highly effective in learning 

complex visual representations, enabling more accurate and robust semantic 

segmentation. The relationship between remote sensing and semantic segmentation will 

also be explored. Remote sensing data, such as satellite imagery and aerial photographs, 

provide valuable sources of information for semantic segmentation tasks. The 

integration of remote sensing and semantic segmentation has opened new possibilities 

for applications in areas such as land cover classification, urban planning, and 

environmental monitoring. Moreover, an overview of the software tools and 

frameworks available for semantic segmentation will be provided. These resources 

offer a range of functionalities, from pre-trained models to evaluation metrics, 

facilitating the implementation and evaluation of semantic segmentation algorithms. 

Finally, we will survey existing research in the field, focusing on studies related to our 

research objectives. By examining the methodologies, datasets, and outcomes of these 

studies, we can identify gaps and differences that our research aims to address, 
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emphasizing its novelty and contribution to the existing body of knowledge. Through 

this literature review, we aim to establish a comprehensive understanding of the 

historical development, core concepts, and current state of semantic segmentation. This 

foundation will guide our research and contribute to the advancement of semantic 

segmentation techniques and applications. 

6.3.2. Semantic segmentation 

Image segmentation is a process of dividing an image into several distinct regions or 

parts based on certain criteria. However, this process doesn't necessarily involve 

understanding the image content. On the other hand, semantic segmentation aims to 

divide an image into meaningful regions based on their semantic or conceptual content. 

[3]. Semantic segmentation is a computer vision task that involves dividing an image 

into multiple segments or regions and assigning a class label to each of those segments. 

The objective of semantic segmentation is to identify every pixel in an image and assign 

it to a corresponding class label. This means that each segment of the image represents 

a specific object or part of an object and is labeled accordingly. In other words, the goal 

of semantic segmentation is to identify the regions of an image that are semantically 

meaningful, such as objects or parts of objects, and assign each pixel in those regions 

to a specific class label. This technique is useful in a variety of computer vision 

applications, such as object detection, image editing, and autonomous navigation. [1] 

One of the major advances in semantic segmentation has been the use of deep 

convolutional neural networks (DCNNs). These networks are capable of extracting 

high-level features from images, which makes them particularly useful in identifying 

semantically meaningful regions in images. [2] 

6.3.3. Early beginnings of semantic segmentation. 

The early beginnings of semantic segmentation can be traced back to the development 

of computer vision and image processing techniques. [3] Where Segmentation is the 

process of separation of required information from a data for further processing. [4] In 

the early stages, the focus was primarily on low-level image analysis tasks such as edge 

detection and feature extraction. [3]  

6.3.3.1. Active Contour 

The Active Contour Method is a technique that uses a parametric active contour model 

based on feature images to extract object contours. Active contours, also known as 

snakes, are deformable models that use constraints and forces within an image for 

segmentation. By leveraging these active contours, the method accurately delineates 

the boundaries of objects of interest. This approach is particularly useful for objects 

with irregular shapes or complex boundaries, enabling precise segmentation and further 

analysis. [3] [4] 

6.3.3.2. Region Growing  
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The Region Growing Method is a technique that involves selecting seed points and 

growing regions from these points to adjacent points based on a region membership 

criterion. This approach exploits the fact that pixels close to each other tend to have 

similar gray values. It starts with a single pixel as a seed and gradually adds new 

pixels to the region. In contrast to histogram-based region detection, which lacks 

spatial information and only provides the distribution of gray levels, region-

growing approaches consider the spatial proximity of pixels to determine their 

membership in a region. By iteratively expanding the region from the seed point, 

this method can effectively identify connected regions with similar characteristics . 

[5][6] 

 

6.3.3.3. Markov Random Field 

A Markov Random Field (MRF) is a graphical model 

where nodes represent random variables and edges 

capture local influences between them. The 

connectivity of the graph enables the propagation of 

these influences globally. MRFs are powerful tools for 

modeling dependencies and interactions in a 

probabilistic framework. They find applications in 

various fields, such as computer vision and machine 

learning, to capture complex relationships and solve 

inference problems efficiently. By representing the 

relationships between variables, MRFs provide a 

comprehensive understanding of the system being 

modeled. [7][8]  

6.3.3.4. Edge Detection 

Edge detection is a fundamental technique in image 

processing that aims to identify boundaries of objects 

within an image. It operates by detecting abrupt 

changes in brightness, which are referred to as 

discontinuities. These abrupt changes typically 

indicate the presence of edges or boundaries between 

different regions in the image. By locating and 

highlighting these edges, edge detection algorithms facilitate subsequent image analysis 

CH 6 Figure1 : Segmentation of brain CT image 

using active contours. [4] 
CH 6 Figure 2 Region (seed) Growing Segmentation. [6] 

CH 6 Figure 3 : Implementation of a Gaussian Markov 

random field sampler for forward uncertainty 

quantification in the Icesheet and Sea-level System 

Model v4.19 . [8] 

CH 6 Figure 4 : Edge detection via the HED approach 

with OpenCV and deep learnin.[10] 
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tasks such as object recognition, segmentation, and feature extraction. The 

identification of edges plays a crucial role in various applications, including computer 

vision, robotics, and medical imaging [9] [10]  

6.3.3.5. Thresholding 

Segmentation is the process of dividing an image into 

regions or identifying the contours corresponding to 

objects. Common properties are used to separate these 

regions or identify the differences between them. One 

simple property that pixels in a region can share is 

their intensity. This leads to thresholding, a 

segmentation technique where a grayscale image is 

transformed into a binary image with only two values, 

0 and 1, based on a threshold value. Pixels with 

intensity values above the threshold are assigned the 

value 1 (white), while the rest are assigned the value 

0 (black). Thresholding allows for the separation of light and dark regions, providing a 

basic but effective method for image segmentation [11] [12]. 

6.3.3.6. Clustering Method 

Clustering is an unsupervised learning method in 

machine learning that involves drawing inferences 

from unlabeled datasets. It is an exploratory data 

analysis technique used to analyze multivariate 

datasets. The goal of clustering is to divide the dataset 

into a specific number of clusters, where data points 

within each cluster share similar characteristics. 

Clusters are formed by grouping data points together, 

minimizing the distance between them. The purpose 

of clustering is to identify and segregate groups with 

similar traits or patterns. This technique is useful for 

understanding the inherent structure and relationships 

within the data, enabling further analysis and insights [13] [14].  

6.3.3.7. Level Set Method 

The level-set method is a technique that relies on a 

continuous level-set function, where the interface or 

boundary is defined by the zero contour of the 

function. The level-set function, denoted as ϕ, is a 

scalar field that represents the distance to the nearest 

interface or boundary. By using this function, the 

level-set method provides a powerful framework for 

tracking and evolving interfaces or boundaries in 

various applications, including image processing and 

shape optimization. It allows for efficient and 

accurate representation and manipulation of complex geometries, making it particularly 

CH 6 Figure 5 : Image Thresholding Based on Otsu's 

Method using OpenCV .1[12] 

CH 6 Figure 6: Clustering in Machine Learning  -.  

[14] 

CH 6 Figure 7:  Level-set method Level set Shape 

Volume of fluid method, shape, angle, shape, and 

topology. [16] 
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useful in problems involving shape analysis, object tracking, and image segmentation. 

[15] 

6.3.3.8. Random Walk Method 

Random walk theory posits that changes in asset 

prices, such as stock prices, follow a random pattern. 

This implies that past prices cannot be reliably used 

to predict future prices, as stock prices move in an 

unpredictable manner. Furthermore, random walk 

theory suggests that the stock market is efficient, 

meaning that it incorporates and reflects all available 

information.  

The concept of random walk challenges the notion that traders can time the market or 

employ technical analysis to identify and profit from patterns or trends in stock prices. 

Critics of random walk theory argue that stock prices can be predicted using various 

methods, such as technical analysis. These traders and analysts believe that there are 

exploitable patterns and trends in stock prices that can be identified and utilized for 

profitable trading strategies [17]. 

6.3.4. AI, ML, and Deep Learning: Revolutionizing Image 

Segmentation 

Artificial Intelligence (AI) and Machine Learning (ML) techniques, particularly Deep 

Learning, have revolutionized image segmentation tasks. Image segmentation involves 

partitioning an image into distinct regions or objects. AI and ML algorithms can learn 

from large amounts of labeled data to automatically identify and delineate these regions 

accurately. Deep Learning, with its deep neural networks, has shown remarkable 

performance in image segmentation by leveraging its ability to extract complex features 

and learn hierarchical representations from data. This enables precise and fine-grained 

segmentation of objects in images. 

6.3.4.1. Artificial Intelligence (AI) 

Artificial Intelligence (AI) has emerged as a transformative technology with the 

potential to revolutionize various industries and domains.[18] AI refers to the 

development of intelligent systems that can perceive reason, learn, and make decisions 

similar to human intelligence. In recent years, AI has gained significant attention and 

has become a driving force behind numerous advancements.  

6.3.4.2. Machine Learning (ML) 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on the 

development of algorithms and models capable of learning from data and making 

predictions or decisions without explicit programming. ML techniques have 

revolutionized various industries and domains by enabling computers to automatically 

learn patterns, extract insights, and perform complex tasks. In the field of image 

segmentation, ML techniques have played a pivotal role in improving accuracy and 

CH 6 Figure 8:   Plot a Random Walk. [17] 
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efficiency. ML algorithms learn from labeled datasets to identify and classify different 

regions or objects within images. They leverage statistical techniques, pattern 

recognition, and optimization algorithms to analyze pixel-level information and make 

accurate segmentation decisions.ML-based image segmentation methods include 

clustering algorithms, decision trees, support vector machines (SVM), and random 

forests, among others. These algorithms can analyze feature spaces, learn from training 

data, and make predictions on new, unseen images. ML techniques allow for the 

automated and precise delineation of objects, eliminating the need for manual 

intervention. The integration of ML techniques in image segmentation has 

revolutionized the field, enabling automated and accurate solutions across various 

industries. With ongoing advancements and the availability of large-scale labeled 

datasets, ML-based image segmentation holds great potential for further improvement 

and broader applications in the future.  

6.3.4.3. deep learning (DL) 

Deep Learning (DL) has emerged as a powerful subset of Machine Learning (ML) that 

utilizes artificial neural networks with multiple layers to extract hierarchical 

representations and learn complex patterns from data. DL has revolutionized various 

fields, including image segmentation, by significantly improving accuracy and 

performance. 

6.3.4.3.1. Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are a family of machine learning models that are 

inspired by the biological structure of the human brain. These networks consist of a set 

of units or nodes, which are connected in a way that mimics the neural architecture of 

the brain. These units, also known as artificial neurons, are aggregated into layers that 

are connected in a sequential manner. Typically, not all neurons are directly connected, 

and signals travel from the input layer to the output layer through intermediate layers 

called hidden layers. The strength of the connections between pairs of neurons is 

represented as model parameters that can be learned through a process called model 

training, which is based on a technique called back-propagation. This technique adjusts 

the individual connection values, also known as weights, to minimize a function that 

represents how big the errors are that the network commits while performing the task. 

[3] 

6.3.4.3.2. Deep Artificial Neural Networks (DNNs)   

Deep Artificial Neural Networks are a specific type of ANNs that contain more than 

three layers, including one input layer, one hidden layer, and one output layer. The 

intuition behind using deep networks is that each layer adds its own level of non-

linearity, achieving a higher abstraction capacity that cannot be reached by a single 

hidden layer. Although theoretically, a shallow network with enough neurons in the 

hidden layer can represent any function, deep networks work much better in practice. 

In a DNN, each layer's inputs are linearly combined, and hence cannot produce the non-

linearity that can be seen through multiple layers. [19] 
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6.3.4.3.2. Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks are a subfamily of ANNs that are designed to deal with 

data such as images or audio. CNNs take inspiration from the visual cortex of the brain, 

where different neurons or groups of neurons are sensitive to different patterns and fire 

accordingly. Each layer in a CNN is characterized by several parameters. [19] 

i. Kernel size: the kernel size defines the field of view of the convolution as it refers 

to the spatial dimensions of the filter (the size is generally the same is all spatial 

dimensions, but it is not necessary). 
ii. Input depth: refers to the number of stacked feature maps received from the 

previous layer. Thus, the filter dimensions in a given convolutional layer will be 

the spatial dimensions and the input depth. 

iii. Output depth or number of filters: the size of the 

filter bank contained in a layer. Each filter will end up 

generating a feature map. These filter maps will be 

stacked and passed forward to the next layer. 

Consequently, the number of filters in one layer is 

equivalent to the input depth in the next one. 

iv. Stride: stride is the number of pixels slid along each 

dimension to calculate consecutive filter outputs. 

v. Padding: this parameter defines how the border of a 

sample is handled. Unpadded convolutions will crop 

away some of the borders if the kernel size is larger 

than 1. 

All together, these parameters define a convolution 

operation. 

6.3.4.3.2.1. Transposed convolutional layers 

In the field of deep learning, transposed convolution, also known as deconvolution or 

fractionally strided convolution, is an interesting operation that reverses the effect of a 

normal convolution. While a regular convolution reduces the spatial dimensions of the 

input, transposed convolution increases the spatial dimensions of the output while 

preserving the connectivity pattern of a standard convolution. This is achieved through 

the use of clever padding techniques on the input 

data, which enable the expansion of the output 

spatial dimensions. (Figure 6-10) provides an 

illustrative example of transposed convolution, 

demonstrating the increase in spatial dimensions 

from a 4-dimensional space to a 16-dimensional 

space. Transposed convolution plays a crucial 

role in tasks such as image upsampling, image 

synthesis, and generating high-resolution feature 

maps in deep learning architectures. [19] 

 

 

CH 6 Figure 9: a 2D convolution with a 

kernel size of 3stride of 1 and padding. [3 ]  

CH 6 Figure 10: Example of 2D transposed convolution. 

[3]  



 
Page | 82 

 

Dilated Convolutions  

Dilated convolutions, also known as "a-trous convolutions," offer a way to expand the 

receptive fields of convolutional filters without sacrificing resolution. They are a 

generalization of Kronecker-factored convolutional filters and utilize unsampled filters. 

The dilation rate, denoted as "l," controls the upsampling factor. By stacking l-dilated 

convolutions, the receptive fields grow exponentially while keeping the number of filter 

parameters linear. This property enables efficient dense feature extraction at any 

resolution. It's worth noting that typical convolutions can be considered as 1-dilated 

convolutions. Dilated convolutions are a valuable tool in deep learning architectures for 

tasks such as image segmentation, where 

capturing context across different scales is 

crucial. [20] 

Fig. 6-11: As shown, dilated convolution 

filters with various dilation rates: (a) 1-

dilated convolutions in which each unit has 

3×3 receptive fields, (b) 2-dilated ones with 

7 × 7 receptive fields, and (c) 3-dilated 

convolutions with 15 × 15 receptive fields.  

In practical terms, implementing dilated convolutions involves dilating or expanding 

the filter before performing the convolution operation. This expansion is done by 

increasing the size of the filter according to the specified dilation rate, while filling the 

additional elements with zeros. As a result, the filter weights are matched with distant 

elements that are not adjacent if the dilation rate is greater than one. This allows the 

network to capture a broader context and incorporate information from a larger 

receptive field. Figure 6-10 provides visual examples of dilated filters. 

 
Fig. 6-12: Filter elements (green) matched 

to input elements when using 3×3 dilated 

convolutions with various dilation rates. 

From left to right: 1, 2, and 3. [20] 

 

 

6.3.4.3.3. Feature Fusion 

To enhance the performance of fully convolutional architectures in image 

segmentation, feature fusion is employed as a method to incorporate 

contextual information. This technique involves merging a global 

feature, obtained from a previous layer, with a more localized feature 

map extracted from a subsequent layer. Skip connections, seen in 

architectures like the original FCN, facilitate a late fusion approach by 

combining feature maps from multiple layers. 

Fig. 6-13: Skip-connection-like architecture, which performs late fusion 

of feature maps as if making independent predictions for each layer and 

merging the results. Figure extracted from. [20] 

CH 6 Figure 11: Dilated Convolutions [20] 

CH 6 Figure 12: examples of dilated filters [20] 

CH 6 Figure 13: Skip-connection-

like architecture [20] 
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In conclusion, Deep Learning has revolutionized image segmentation by leveraging the 

power of Artificial Neural Networks, specifically Convolutional Neural Networks. 

These networks have shown exceptional capability in extracting hierarchical 

representations and learning complex patterns from image data. Techniques such as 

transposed convolutional layers, dilated convolutions, and feature fusion have further 

enhanced the accuracy and efficiency of segmentation models. With continuous 

research and advancements in Deep Learning, we can expect further improvements in 

segmentation algorithms, leading to more accurate and robust results. 

6.3.5. Remote sensing and UAVs 

Remote sensing, which involves acquiring data from a remote sensing device and 

extracting valuable information from it, plays a crucial role in various applications.[21] 

Unmanned aerial vehicles (UAVs) equipped with sensors have emerged as a versatile 

tool in remote sensing, finding applications in agriculture, forestry, mining, and more. 

While UAVs aim to be a general remote sensing tool, there is a need for tailored data 

processing and analysis methods specific to different applications. UAV data offers 

advantages such as high spatial resolution and flexibility in integration with sensors, 

making them comparable to traditional airborne and spaceborne remote sensing 

platforms. [22][23] Although satellite imaging and ground-based technology have been 

studied for crop sensing, they suffer from limitations. Satellite imagery often lacks the 

spatial resolution required to capture important crop metrics like the leaf area index 

(LAI), essential for estimating crop growth. Additionally, satellite sensors cannot sense 

visible light during cloudy conditions, posing a significant challenge. On the other hand, 

ground-based sensing encounters difficulties when dealing with tall crops like maize, 

as accessing the fields becomes impractical. [22][23]  

6.3.6. Integration of Remote Sensing and Semantic Segmentation 

The integration of remote sensing and semantic segmentation has revolutionized our 

ability to extract valuable information from vast amounts of remote sensing data. 

Remote sensing, through sources like satellite or UAVs imagery, provides us with a 

comprehensive view of the Earth's surface. This integration has the potential to 

transform the way we study and monitor our environment, enabling us to make 

informed decisions, mitigate risks, and manage resources more effectively. 

  

CH 6 Figure 14: illustrates 

the effectiveness of semantic 

segmentation in accurately 

classifying five distinct 

classes: buildings, roads, 

trees, crops, and water [24]. 
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6.3.7. Agriculture-Vision Challenge: Methodologies and Results 

In the following section, we will present an overview of the methodologies employed 

by various teams in the Agriculture-Vision challenge. The challenge focused on the 

development of advanced computer vision models for accurate classification and 

segmentation of agricultural areas using aerial images. Additionally, we will discuss 

the dataset provided by the Agriculture-Vision challenge, which will be further detailed 

in Section 6.2.1 titled "Methodologies: Dataset" The methodologies employed by the 

participating teams showcased a range of innovative techniques and approaches. These 

methodologies encompassed various aspects, such as addressing imbalanced class 

distributions, handling feature divergence between different image channels, exploring 

fusion techniques for multi-spectral images, incorporating attention and feature 

extraction blocks, and tackling challenges related to varying shapes and sizes of 

anomaly patterns. 

i. Multi-view Self-Constructing Graph 

Convolutional Networks with Adaptive Class 

Weighting Loss 

• Introduced a novel method for adaptive class 

weighting in multi-class segmentation tasks. 

• Implemented iterative batch-wise class rectification 

to address the issue of imbalanced class distribution 

in training data. 

• Computed pixel-frequency for each class to derive 

adaptive class weights. 

• Developed an adaptive multi-class weighting 

(ACW) loss function to balance positive and 

negative samples . 

• Utilized pertained backbone models, applied data 

augmentation techniques, and employed specific 

optimization strategies. 

 
 

 

 

 

CH 6 Figure 15: Adaptive Class Weighting 

Loss [25] 

 

 

 

 

ii. Reducing the feature divergence of RGB and 

near-infrared images using Switchable 

Normalization. 

• Focused on addressing the feature divergence 

between RGB and near-infrared (NIR) images in 

agricultural aerial image processing . 

• Proposed the use of a Switchable Normalization 

block integrated into the DeepLabV3+ 

segmentation model. 

• Applied the symmetric Kullback-Leibler (KL) 

divergence measure to significantly reduce the 

divergence between RGB and NIR channels. 

• Introduced a hybrid loss function to handle 

imbalanced data and optimize the evaluation 

metric. 

CH 6 Figure 16: Figure introduce the IBN-s 

Block [25] 
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iii. Team AGR (University of Illinois at Urbana 

Champaign) 

• Applied the focal loss and Lovsz-Softmax 

functions to handle imbalanced datasets . 

• Explored the use of additional input channels, such 

as the Normalized Difference Vegetation Index 

(NDVI) and image mask. 

• Utilized the ESP Net V2 model as the base model, 

trained with the Adam optimizer, and introduced 

dropout layers . 

 

 

iv. Team Haossr (Stanford University, Chegg, 

Inc.) 

• Explored effective fusion techniques for multi-

spectral agricultural images. 

• Proposed a learnable generalized vegetation index 

module that could be concatenated with the 

original color channels. 

• Introduced an additive group normalization 

module to ensure smooth training of the model 

with the generalized vegetation index output.  

CH 6 Figure 17: illustration of the fusion 

module for the generalized vegetation index. 

[25] 

v. Team CNUPR TH2L (Chonnam National 

University, Chosun University) 

• Deployed a Deep Convolutional Encoder-Decoder 

architecture based on MobileNetV2 . 

• Incorporated attention blocks to assign the 

contribution of each spectral channel . 

• Utilized ASPP blocks for multi-scale feature 

extraction and squeeze-excitation blocks for 

upsampling the feature map to the original input 

size.  
CH 6 Figure 18: Team CNUPR TH2L: pipeline 

[25] 

vi. Team TeamTiger (SGGS Institute of 

Engineering and Technology) [25] 

• Developed an encoder-decoder architecture using 

EfficientNet as the backbone and a feature 

pyramid decoder . 

• Addressed challenges related to varying shapes 

and sizes of anomaly patterns, imbalanced class 

distribution, and overlapping labels. 

• Employed the Jaccard loss as the objective 

function for training the model and utilized the 

Adam optimizer . 

CH 6 Figure 19: Team TeamTiger: proposed 

encoder-decoder architecture  
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vii. Team DSSC  

 

• Adopted the Residual DenseNet with Squeeze-

and-Excitation blocks (RD-SE) as the base 

model for semantic segmentation. 

• Implemented residual dense blocks and skip 

connections to compensate for spatial loss 

during feature extraction . 

• Utilized Squeeze-and-Excitation blocks to 

recalibrate channel-wise feature responses. 

 

CH 6 Figure 20: Team DSSC: Residual 

DenseNet with Expert Network architecture. 

[25] 

 

 

 In the Agriculture-Vision challenge, several teams showcased their innovative 

methodologies to tackle the complexities of the task. Each team's approach was 

evaluated based on the modified mean Intersection over Union (mIOU) matrix, which 

will be discussed in the methodology section. The following section provides a 

summary of the results achieved by each team and highlights the effectiveness of their 

respective methodologies. These results serve as a valuable benchmark for comparing 

and evaluating the performance of my own method, which will be presented in the 

results section. By comparing my results with those of other teams, a comprehensive 

assessment of the effectiveness and competitiveness of my approach can be made. 

    CH 6 Table 1: represents the results of different teams based on modified mIOU matrix [25] 
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6.4. Methodology 

In this section, we provide a comprehensive overview of the methods utilized for 

semantic segmentation, describe the dataset employed, and detail the evaluation metrics 

used to assess the accuracy of our models. Our study harnesses the power of deep 

learning techniques, specifically by employing Fully Convolutional Networks (FCNs), 

to capture intricate image features and generate spatially coherent segmentations. The 

dataset utilized in our research is carefully curated, comprising diverse images that have 

been meticulously annotated at the pixel level. To ensure the quality and suitability of 

the dataset, rigorous preprocessing techniques are applied, including the division of 

data into distinct training, validation, and testing sets. For evaluating the performance 

of our models, we employ well-established evaluation metrics such as Pixel Accuracy, 

Intersection over Union (IoU), and F1 score. These metrics provide a comprehensive 

assessment of the segmentation results, considering both pixel-level accuracy and the 

spatial overlap between predicted and ground truth masks. We aim to achieve accurate 

and reliable semantic segmentation results. 

6.4.1. Dataset 
  

The agriculture-Vision dataset, provided by the Agriculture Vision Organization, offers 

a valuable resource for researchers and practitioners in the field of computer vision for 

agriculture. With its focus on aerial farmland images and semantic segmentation of 

agricultural patterns, this dataset presents unique characteristics and challenges that set 

it apart from other image datasets. One notable aspect of the agriculture-Vision dataset 

is the unprecedented aerial image resolution it offers, with pixel resolutions as high as 

10 cm per pixel. This level of detail enables researchers to analyze farmland images at 

a granular level and extract valuable insights related to crop health, field conditions, 

and agricultural practices. In addition to high-resolution RGB channels, the dataset also 

includes Near-infrared (NIR) channels, providing an expanded range of image data for 

analysis. This multi-channel information allows for more comprehensive and accurate 

assessment of various agricultural phenomena, such as plant health, moisture content 

and nutrient levels. [25] 

 

A key highlight of the Agriculture-Vision dataset is the presence of challenging 

annotations of multiple agricultural anomaly patterns. These annotations have been 

meticulously created by professional agronomists with domain expertise, ensuring a 

high level of accuracy and reliability. The dataset encompasses eight distinct types of 

field anomaly patterns that have significant impacts on crop conditions and final yield. 

These patterns include. [25] 

 

Double Plant: Identifying instances where two plants grow closely together enables 

optimization of plant spacing, avoiding resource competition, and maximizing crop 

yield. 

 

Dry Down: Detecting areas with reduced moisture content helps optimize irrigation 

practices, ensuring proper water availability for crops and mitigating the risk of stress-

induced yield losses. 
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Nutrient Deficiency: Recognizing areas displaying nutrient deficiency symptoms 

allows for targeted fertilization, minimizing costs and environmental impact while 

promoting optimal plant growth and yield. 

 

Water: Monitoring the presence of standing or pooled water aids in evaluating 

irrigation efficiency, drainage effectiveness, and waterlogging risks, guiding strategies 

to improve water management and prevent crop diseases. 

 

Waterway: Analyzing waterway patterns assists in assessing drainage systems, 

maintaining proper water flow, preventing flooding, and supporting optimal field 

conditions for sustained crop growth. 

 

Weed Cluster: Detecting concentrated weed patches facilitates targeted weed control 

strategies, minimizing weed interference and allowing for site-specific herbicide 

applications or manual removal, reducing yield losses and herbicide usage. 

 

Endrow: Analyzing the characteristics of endrows assists in precision agriculture by 

identifying boundary effects Endrows provide access for machinery and equipment to 

enter and exit the field without damaging the crops. They allow for easier turning and 

maneuvering of large agricultural vehicles, such as tractors, during various field 

operations. 

 

The dataset's size and shape variations further enhance its utility for agricultural 

research. With 94,986 images collected from 3,432 farmlands across the US, the 

Agriculture-Vision dataset captures the diversity and heterogeneity of real-world 

agricultural settings. This variability presents researchers with the opportunity to 

develop robust and generalizable models capable of handling different farmland 

layouts, cropping systems, and geographical locations. To ensure the quality and 

reliability of the annotations, a strict quality assurance process has been implemented 

during the annotation phase. This process, coupled with the expertise of agronomists, 

guarantees the accuracy and precision of the provided annotations, making the 

Agriculture-Vision dataset a trustworthy resource for semantic segmentation tasks in 

aerial agricultural images. [25] 

 

Overall, the Agriculture-Vision dataset fills a critical gap in the availability of high-

resolution aerial farmland images with comprehensive annotations. It opens up new 

avenues for research and innovation in the field of computer vision for agriculture, 

empowering researchers to develop advanced algorithms and tools for automated 

analysis and monitoring of agricultural patterns, leading to improved crop management 

practices and enhanced productivity in the agricultural sector. 

 

6.4.2. Dataset preparation and pipelining 

 

Like we see in the last section the intricate challenges associated with handling a 

substantial dataset, encompassing 94,986 images alongside their corresponding 8 label 

masks, culminating in an aggregate of approximately 190,000 images. Furthermore, the 

limitations imposed by hardware resources necessitate careful consideration in order to 

devise optimal solutions. Consequently, this study underscores the critical importance 
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of data preprocessing, a facet that is often overlooked despite its significant impact on 

the overall model performance. 

 

This section presents a comprehensive approach to address the data handling challenges 

associated with semantic segmentation datasets. Firstly, Proper organization of the 

dataset enables to efficiently navigate and access the required image and label mask 

pairs for training and evaluation purposes. Secondly, advanced preprocessing 

techniques specifically tailored for semantic segmentation are explored. These 

techniques encompass data augmentation methods such as random cropping, rotation, 

scaling, and flipping, which enhance the dataset's diversity and improve the model's 

ability to generalize to different viewpoints and object scales. The hardware 

considerations in the context of semantic segmentation are also addressed in this 

section. Leveraging parallel processing techniques and optimizing memory usage 

during data preprocessing can significantly accelerate the segmentation pipeline. 

 

6.4.2.1. Data Preprocessing   

Data preprocessing is a crucial step in preparing the dataset for semantic segmentation 

research. We follow the following steps in our method. 

 

i. Data Organization: Organize the dataset into appropriate 

directories or folders, separating the images and their 

corresponding annotation masks. This organization 

facilitates easy access and management of the data during 

the preprocessing phase. 

 

ii. Data Exploration and Visualization: Gain familiarity 

with the dataset by visually inspecting a sample of images 

and their corresponding annotation masks. This step helps 

in understanding the characteristics of the data and 

identifying any potential issues or anomalies. 

 

iii. Data Cleaning: Perform any necessary cleaning steps to 

remove irrelevant or corrupted data from the dataset. This 

may involve removing duplicate images, handling 

missing annotation masks, or addressing any other data 

quality issues that may impact the training process. 

 

iv. Data Augmentation: Apply data augmentation techniques to increase the 

diversity and variability of the dataset. Common augmentation methods for 

semantic segmentation include random cropping, rotation, scaling, and flipping 

of both the images and their corresponding annotation masks. These techniques 

help in enriching the dataset and improving the generalization capability of the 

models. 

 

v. Normalization: Normalize the input images to ensure consistent and 

standardized pixel values across the dataset. Common normalization techniques 

include scaling the pixel values to a specific range (e.g., [0, 1]) or applying mean 

subtraction and standard deviation normalization. 

 

CH 6 Figure 21: Data Preprocessing 
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vi. Image resizing: is one of the essential operations in deep 

learning, especially while using transfer learning. In this 

process, we take a pretrained model and modify it according to 

our task. So, for this we need to resize the dataset in accordance 

with the pretrained model. This is where image resizing comes 

into play. [18]. 

 

vii. Splitting the Dataset: Divide the dataset into separate subsets 

for training, validation, and testing. The training set is used to 

train the model, the validation set is used for tuning 

hyperparameters and monitoring the model's performance, and 

the testing set is reserved for final evaluation. 

6.4.2.2. Data pipelining 

 

As a machine learning project grows, the importance of data pipelines 

becomes more significant. They facilitate easy infrastructure scaling 

when dealing with large datasets or resource requirements. Data 

pipelining refers to the efficient movement of data through various 

stages of a machine learning pipeline, including data loading, 

preprocessing, and model training or inference. [26] 

The input pipeline of machine learning training follows a three-stage 

ETL (extract, transform, and load) process. This process involves both 

offline and online preprocessing of raw input data before it is ready to 

be used for model training. [26][27] 

 

• Extract: In the extract stage, raw input data in various formats 

such as images, audio, or text files is collected from different 

sources. This can include scraping data from websites, gathering data from 

databases, or retrieving data from storage systems. The goal is to gather the 

necessary data for training the machine learning model. [26][27][28] 

• Transform: The transform stage involves performing various preprocessing steps 

on the extracted data to make it suitable for model training. This includes tasks 

such as feature extraction, data cleaning, normalization, and data augmentation. 

For example, in the case of images, the transform stage may involve resizing 

images, applying data augmentation techniques like rotation, or flipping, and 

converting them to a standardized format. [26][27][28] 

• Load: Once the data has been transformed, it is loaded into the training pipeline. 

This typically involves converting the preprocessed data into a binary format that 

can be efficiently ingested by the model during training. The binary format allows 

for faster loading and processing of the data, enabling efficient training on large 

datasets. The loaded data is then fed into the model for training. [26][27][28]. 

CH 6 Figure 22: Data Augmentation 
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The input pipeline is responsible for fetching the raw input data from storage and 

transforming it into input features for the model. [26] 

In this scenario, the CPU and GPU operate sequentially without prefetching. The CPU 

handles data loading and preprocessing tasks one by one, and then passes the processed 

data to the GPU for model training. This sequential process can result in idle time for 

the GPU, as it needs to wait for the CPU to finish its tasks before it can start training. 

As a result, the overall training process may be slower and less efficient. 

 

In this scenario, prefetching is implemented to improve the training process. The CPU 

starts loading and preprocessing the next batch of data while the GPU is still training 

on the current batch. This overlap in operations allows the GPU to continuously receive 

new batches of data without waiting for the CPU to complete preprocessing. As a result, 

the GPU's idle time is minimized, leading to faster and more efficient training. 

 

Prefetching helps reduce the latency between CPU and GPU operations by overlapping 

their tasks. It optimizes the data pipeline by allowing the CPU and GPU to work in 

parallel, utilizing the available resources more effectively. This can result in significant 

speed-ups, especially when working with large datasets or complex models. To build 

efficient pipelines we can use TensorFlow Data. 

 

To build efficient pipelines, one effective tool available is TensorFlow Data. 

TensorFlow Data provides a high-level API that simplifies the process of creating data 

pipelines in TensorFlow. It offers a range of features for data manipulation, 

transformation, and batching, making it easier to handle complex data preprocessing 

tasks. By leveraging TensorFlow Data, you can streamline the input pipeline, optimize 

data loading and preprocessing operations, and enable parallel processing. This helps 

to maximize resource utilization and accelerate the training process. TensorFlow Data 

Figure 6-23: Single threaded CPU and single GPU working sequentially with no prefetching [28] 

CH 6 Figure 24: Single threaded CPU and single GPU working with prefetching [28] 
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also integrates seamlessly with other TensorFlow components, allowing for a seamless 

end-to-end workflow. 

 

By implementing robust data pipelining techniques and utilizing tools like TensorFlow 

Data, you can enhance the overall efficiency and performance of your machine learning 

workflows, ultimately leading to more accurate and reliable models. 

6.4.3. Semantic Segmentation metrics 

Evaluation metrics are important for assessing the performance of semantic 

segmentation models, which associate class labels with pixels to identify meaningful 

patterns in images. The choice of metric should consider the specific application of the 

model. Graph partitioning and superpixel-based approaches are among the methods 

used for evaluating segmentation models. Metrics enable fair comparison with other 

existing methods and play a crucial role in model validation. 

 

6.4.3.1. Pixel Accuracy (PA): 

Pixel accuracy is a simple evaluation metric for semantic segmentation models. It 

calculates the ratio of the total number of correctly classified pixels to the total 

number of pixels in the image. If there are k foreground classes and an additional 

background class (k+1), then the pixel accuracy is determined by dividing the sum 

of correctly classified pixels for all classes by the total number of pixels in the 

image. [29][30] 

 

PA = 
∑ 𝑃𝑖𝑖𝐾

𝑖=0

∑ ∑ 𝑃𝑖𝑗𝐾
𝑗=0

𝐾
𝑖=0

 

 

6.4.3.2. Mean Pixel Accuracy (MPA)  

This is an improved version of Pixel Accuracy wherein; the ratio of correctly 

classified pixels is calculated on the class basis. This is then averaged over the total 

number of classes found [29][30] 

 

MPA = 
1

𝑘+1

∑ 𝑃𝑖𝑖𝐾
𝑖=0

∑ ∑ 𝑃𝑖𝑗𝐾
𝑗=0

𝐾
𝑖=0

 

 

 

6.4.3.3. Intersection over Union (IoU) 

Intersection over Union (IoU) is a popular evaluation metric for semantic 

segmentation tasks, also known as the Jaccard Index. IoU measures the overlap 

between the predicted segmentation and the ground truth segmentation by 

computing the ratio of the area of intersection between the two sets to the area of 



 
Page | 93 

 

their union. In mathematical terms, given ground truth segmentation A and 

predicted segmentation B, IoU is calculated as [29][30] 

 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

TP, FP, FN - The IoU of a prediction target mask pair, if it exceeds a predefined 

threshold, is observed to have true positive. If the prediction mask has no associated 

ground truth, then a false positive is indicated. If the ground truth has no associated 

prediction mask, then a false negative is indicated. 
 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

6.4.3.4. Mean Intersection over Union (MIoU)  

Is a widely used evaluation metric for semantic segmentation. It calculates the IoU 

for each class separately and then takes the average over all classes. MIoU is 

expressed as the ratio of the sum of true positives for all classes to the sum of true 

positives, false negatives, and false positives for all classes. [29][30] 

 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =
1

𝑐
∑

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
𝑐

 

6.4.3.5. Precision 

Precision or positive predictive value (PPV), is the relation between true positives 

and all positive predictions: [29][30] 

 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

6.4.3.6. Recall  

It indicates the completeness of the positive prediction to that of the ground truth. 

It determines of all of ground truth annotations, how many positive predictions are 

[29][30] 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

6.4.3.7. F1 score  

This is the harmonic mean between precision and recall. It brings in a balance 

between precision and recall. A good F1 score implies less false positives and less 

false negatives [29][30] 

F1 Score =  
2∗Recall∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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6.4.3.8. Dice coefficient  

This is defined as two times the overlap area between the prediction and ground 

truth   map, divided by the sum of pixels in both prediction and ground truth map. 

Suppose A is the ground truth and B is the predicted segmentation truth, then 

[29][30] 

 

𝐷𝑖𝑐𝑒 = 2 
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

 

In summary, evaluation metrics play a crucial role in assessing the performance of 

semantic segmentation models and enabling fair comparison with existing methods. 

The choice of metric should consider the specific application of the model. 

 

6.4.4. Models  
6.4.4.1. Fully Convolutional Networks (FCN) 

Fully Convolutional Neural Networks 

(FCNN) has become a popular strategy 

and baseline for semantic segmentation 

in recent years. FCNNs replace fully 

connected layers with convolutional 

layers, allowing them to handle input 

images of arbitrary sizes and produce 

corresponding outputs with spatial 

dimensions. Chen et al. (2014) 

introduced a similar FCNN model but 

integrated conditional random fields 

(CRFs) for detailed boundary recovery. 

Long et al. (2015) [31] proposed an 

architecture that combined semantic information from a deep, coarse layer with 

appearance information from a shallow, fine layer to produce accurate and detailed 

segmentations. The workflow of FCNNs is illustrated in Figure 6-25, where each layer 

of data in a Convnet is a three-dimensional array of size h x w x d. Convolutional 

networks are built on translation invariance and operate on local input regions with 

relative spatial coordinates. FCNNs can efficiently compute feedforward computation 

and back propagation over an entire image, making them a popular choice for semantic 

segmentation tasks. [31][32] 

 

 

 

 

CH 6 Figure 25: FCN workflow diagram (Long et al., 2015) 
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6.4.4.2. U-Net 

The U-Net is a convolutional neural network architecture that was introduced in 2015 

as a solution for biomedical image segmentation tasks. It has gained popularity due to 

its impressive performance and has been applied to a variety of other domains such as 

satellite and aerial image analysis, self-driving cars, and even natural disaster detection. 

Fig. 6-26. U-net architecture (example 

for 32x32 pixels in the lowest 

resolution). Each blue box corresponds 

to a multi-channel feature map. The 

number of channels is denoted on top of 

the box. The x-y-size is provided at the 

lower left edge of the box. White boxes 

represent copied feature maps. The 

arrows denote the different operations. 

[33] 

 

 

6.4.4.3. Residual U-Net:  

Going deeper would improve the 

performance of a multi-layer neural network, 

however, could hamper the training, and a 

degradation problem maybe occur [4]. To 

overcome these problems, He et al. [4] 

proposed the residual neural network to 

facilitate training and address the degradation 

problem. The residual neural network 

consists of a series of stacked residual units. 

Each residual unit can be illustrated as a 

general  

6.4.4.3.1. Residual Block  

Recent research has shown that increasing the depth of a multi-layer neural network 

can lead to improved performance, but also runs the risk of hampering training and 

causing a degradation problem [34]. In particular, it has been observed that as network 

depth increases, accuracy can become saturated and then rapidly degrade, even in the 

absence of over fitting. [34] [35] 

To address this problem, He et al [35] proposed the residual neural network, which 

consists of a series of stacked residual units. Each residual unit allows the network to 

learn a residual mapping of the input, rather than directly fitting the desired underlying 

mapping. This approach has been shown to be effective in improving performance and 

overcoming the degradation problem [34]. Experimental results have demonstrated the 

CH 6 Figure 26: U-net architecture 

CH 6 Figure 27: Training error (left) and test error (right) on 

CIFAR-10 with 20-layer and 56-layer "plain" networks. The 

deeper network has higher training error, and thus tests error. 
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effectiveness of the residual neural network approach. For example, He et al [34] 

thoroughly verified the degradation problem and the effectiveness of the residual neural 

network approach through experiments on the CIFAR-10 and ImageNet datasets.                                   

Huang et al [34] similarly observed the degradation problem in experiments on deep 

residual networks and demonstrated that the use of residual connections can alleviate 

the problem. These results suggest that the residual neural network approach is a 

promising approach for improving the performance of deep neural networks. [34] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residual U-net (ResUnet) 

Deep ResUnet is a semantic segmentation neural network that combines the strengths 

of both U-Net and residual neural network architectures. This combination offers two 

benefits: First, the residual unit helps to ease the training of the network. Second, the 

skip connections within a residual unit and between low and high levels of the network 

facilitate information propagation without degradation, enabling the design of a neural 

network with significantly fewer parameters while still achieving comparable or even 

better performance on semantic segmentation tasks. [35] 

CH 6 Figure 28: Residual learning: a building 

block. 
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6.4.4.4. U-net ++   

The UNet++ architecture is a novel segmentation approach that improves upon the 

original U-Net model. It achieves this by incorporating three key enhancements: 

convolution layers on skip pathways, dense skip connections, and deep supervision. 

[36] 

i. The convolution layers on skip pathways, which bridge the semantic gap 

between encoder and decoder feature maps. [36] 

ii. The dense skip connections, which improve gradient flow, allowing for more 

effective information propagation. [36] 

iii. The inclusion of deep supervision, which enables model pruning and improves 

or in the worst case achieves comparable performance to using only one loss 

layer. [36] 

CH 6 Figure 29: Residual U-net  
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6.4.4.4.1. UNet++ Architecture 

UNet++ consists of an encoder and decoder that are connected through a series of 

nested dense convolutional blocks. The main idea behind UNet++ is to bridge the 

semantic gap between the feature maps of the encoder and decoder prior to fusion. For 

example, the semantic gap between (X0, 0, X1,3) is bridged using a dense convolution 

block with three convolution layers. In the graphical abstract, black indicates the 

original U-Net, green and blue show dense convolution blocks on the skip pathways, 

and red indicates deep supervision. Red, green, and blue components distinguish 

UNet++ from U-Net. [36] 

Overall, UNet++ is a powerful segmentation architecture that has proven to be effective 

in reducing semantic gaps and improving segmentation accuracy. Its re-designed skip 

pathways and deep supervision make it a promising approach for addressing 

segmentation challenges at multiple scales. 

 

 

6.4.4.5. U-Net 3+ 
 

A new architecture called U-Net 3+ was proposed by Oktay et al. in 2020. UNet 3+ 

utilizes full-scale skip connections and deep supervisions to extract more information 

from all scales. This architecture was developed by researchers from Zhejiang 

University, Sir Run Run Shaw Hospital, Ritsumeikan University, and Zhejiang Lab. 

[37] 

i. Full-scale skip connections: incorporate low-level details with high-level 

semantics from feature maps in different scales. 

ii. Full-scale deep supervision: learns hierarchical representations from the full-

scale aggregated feature maps. 

CH 6 Figure 30:  UNet++ Architecture 
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6.4.4.5.1. Full-scale skip connections 

 

The UNet 3+ architecture addresses the limitations of previous models, such as UNet 

and UNet++, by incorporating full-scale skip connections. These connections capture 

fine-grained details and coarse-grained semantics in full scales, enabling the model to 

learn the position and boundary of an organ more explicitly. In UNet 3+, each decoder 

layer integrates both smaller- and same-scale feature maps from the encoder and larger-

scale feature maps from the decoder. This is achieved through a set of inter encoder-

decode skip connections that deliver low-level detailed information from the smaller-

scale encoder layers and a chain of intra decoder skip connections that transmit high-

level semantic information from larger-scale decoder layers. This approach helps to 

capture a wider range of information and improve the accuracy of biomedical image 

segmentation. [37] 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH 6 Figure 31: Full-scale deep supervision 

CH 6 Figure 32: Full-scale skip connections 
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6.4.4.5.2. Full-scale Deep Supervision 

 

 

 
 

 

 

 

 

 
 

 

UNet 3+ architecture incorporates a deep supervision mechanism through the 

utilization of side outputs from each decoder stage (Sup1 to Sup5) that are supervised 

by the ground truth. To achieve this, the last layer of each decoder stage is fed into a 

plain 3 × 3 convolution layer, which is then followed by a bilinear up-sampling 

operation and a sigmoid function. This allows for the generation of multiple 

intermediate segmentation outputs, thereby promoting more efficient and effective 

training of the network. [37]  

 

Summarize the differences between Unet and Unet ++ and Unet +++ 

 

The U-Net is popular convolutional neural network architecture for biomedical image 

segmentation. It was proposed by Ronneberger et al. in 2015 and has been widely used 

in various medical imaging applications. To improve the performance of U-Net, a new 

architecture called UNet++ was proposed by Zhou et al. in 2018. UNet++ uses nested 

and dense skip connections to bridge the semantic gap between encoder and decoder 

feature maps, as well as deep supervision to enable model pruning and improve 

performance. However, UNet++ does not explore sufficient information from full 

scales. To address this limitation, a new architecture called UNet 3+ was proposed by 

Oktay et al. in 2020, which uses full-scale skip connections and deep supervisions to 

further improve performance. 

 

6.4.4.6. Attention U-Net 

 
Attention U-Net, by Imperial College London, Nagoya University & Aichi Cancer 

Center, University of Luebeck, HeartFlow, and Babylon Health, is briefly reviewed. 

[38] With Attention Gate (AG), the model automatically focuses to learn the target 

structures of varying shapes and sizes. [38] 

 

CH 6 Figure 33:  Full-scale Deep Supervision 
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CH 6 Figure 34: Attention U-Net 

 

6.4.4.6.1. Architecture of Attention U-Net 

 
The architecture of Attention U-Net is similar to the U-Net and it has a contraction path 

and an expansion path. The contraction path includes a series of convolutional layers 

and max pooling operations, which extracts the local features from the input image. On 

the other hand, the expansion path consists of upsampling layers followed by 

convolutional layers, which capture the global features of the image. 

 

One unique aspect of Attention U-Net is that there is an attention gate (AG) at each skip 

connection. The AG learns to selectively highlight the relevant regions of the feature 

maps from the contraction path, which are used to refine the corresponding feature 

maps from the expansion path. This mechanism helps the network to focus on important 

features and suppress the irrelevant features, which can improve the segmentation 

accuracy. [38] 

 

6.4.4.6.2. Attention Gate 

 
The concept of a "Gated Attention Mechanism" (GAM), which is a neural network 

module that combines both attention and gating mechanisms. The GAM is used to 

enhance the features in a convolutional neural network (CNN) by selectively focusing 

on the most relevant information from different feature maps. The attention mechanism 

is responsible for identifying the most important features, while the gating mechanism 

controls the flow of information by selectively allowing or blocking the attention 
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weights. This allows the CNN to effectively attend to the most important features and 

ignore irrelevant ones, leading to better performance on tasks such as image 

classification. [38] [39] 

 

The gate is composed of two branches: a feature branch and a gating branch. The feature 

branch applies a series of convolutional operations to the input, while the gating branch 

learns to produce a spatial attention mask that emphasizes or suppresses certain regions 

of the input. The two branches are then multiplied element-wise to produce an attended 

feature map, which preserves the most informative features while ignoring the noise or 

irrelevant features. The attended feature map is then passed on to the subsequent layers 

of the network for further processing. [38] [39] 

 
6.4.4.7. Recurrent U-Net 

 
The Recurrent U-Net (RU-Net) is a modification of the popular U-Net architecture that 

incorporates recurrent connections to capture long-term dependencies in the feature 

maps. [39][40] 

 
 

 

The R2U-Net architecture is composed of a contracting path and an expanding path, 

similar to the U-Net. However, each block in the contracting and expanding paths 

contains recurrent connections, which are implemented using gated recurrent units 

(GRUs). The use of GRUs allows the R2U-Net to selectively update the hidden state of 

each block based on the current input and the previous hidden state. [39][40] 

CH 6 Figure 35: Recurrent U-Net 
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6.4.4.8. Recurrent Residual U-Net (R2-UNet) 
 

The R2-UNet adds residual connections to the R2U-Net architecture. Residual 

connections allow the network to learn the residual features from the input, making it 

easier to optimize the network and reduce the vanishing gradient problem. The R2-

ResUNet is able to achieve state-of-the-art performance on medical image 

segmentation tasks. [39][40] 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.4.9. Recurrent Residual U-Net with Attention gate 
 

CH 6 Figure 36: figure, (a) represent the normal block of U-net, (b) represent the block of RU-

Net. 

CH 6 Figure 37: figure, (c) represent the residual block, (d) represent the block of R2-

UNet 
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The Recurrent Residual U-Net with Attention gate (RRU-Net with AG) is a 

modification of the original U-Net architecture that incorporates recurrent and residual 

connections to improve feature representation and an attention gate to enhance the focus 

on relevant regions that introduce in 2021. [39]  

6.4.4.10. DeepLabv3+  

 
DeepLabv3+ is a state-of-the-art image segmentation model that achieves highly 

accurate pixel-level predictions for a given image. It is an extension of the DeepLabv3 

architecture, which uses atrous convolution and multi-scale processing to capture both 

local and global context in the input image. The architecture also employs a novel 

feature pyramid network (FPN) module that aggregates multi-scale feature maps to 

capture more diverse spatial information in the image. [41][42][43] 

 
Figure (6-39) (deeplabV3+) [43] 

 

The figure shows the structure of 

DeeplabV3+, which is 

composed of an encoder and 

decoder path with an ASPP 

module at the bottleneck of the 

structure. 
 

 

The DeepLab V3+ architecture is 

designed to enhance the receptive field of each convolution output without sacrificing 

information, by utilizing dilated convolution and an encoder-decoder structure. In the 

encoding stage, the main DCNN deep convolutional neural network uses serial Atrous 

Convolution. The output of the main network is then split into two parts, one directly 

fed to the decoder branch, and the other passed through a parallel Atrous Convolution 

layer, which employs different rates for feature extraction. The output is then 

compressed using 1x1 volume stitching. The decoding stage takes two inputs: the 

output of the main network and the result of the parallel dilation and convolution. After 

processing, the two results are merged and upsampled using bilinear 

interpolation.[41][42][43][44] 

CH 6 Figure 38: Recurrent Residual U-Net with Attention gate 

CH 6 Figure 39: the structure of DeeplabV3+ 
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One unique aspect of the DeepLab V3+ network is the use of atrous spatial pyramid 

pooling (ASPP), which involves employing atrous convolution in parallel as a strategy 

to extract features at multiple scales and to alleviate the loss of spatial information due 

to pooling or convolutions with striding operations. This technique allows increasing 

the field of view and spatial context at each layer without increasing the number of 

parameters and computational complexity significantly.[41][43][44] 
 
Figure (6-40) (ASPP) [44] 

 
The figure shows The ASPP 

(Atrous Spatial Pyramid Pooling) 

technique in DeepLab V3+ uses 

multiple parallel filters with 

different rates to exploit multi-

scale features and increase the 

effective field-of-view (FOV) of 

each layer. 

 

 

5.2 Results 
In this section, we will delve into the results obtained from the various models 

mentioned in the methodology section. Firstly, we will showcase the analytical scores 

for each model across different datasets. Additionally, we will demonstrate the 

progression of evaluation metrics, such as the Jaccard coefficient, during the runtime 

of the models. Furthermore, we will present side-by-side comparisons of the model 

predictions and the corresponding ground truth data. This visual representation will 

provide insights into the accuracy and performance of each model in capturing the 

desired outcomes. Lastly, we will provide a specific example of a farm land where the 

models successfully detect and precisely determine the affected area and quantify the 

extent of damage. This example will serve as a tangible demonstration of the models' 

capabilities in addressing crop-related issues. By presenting these comprehensive 

results, we aim to provide a thorough understanding of the performance and 

effectiveness of the models employed in predicting and assessing crop issues. 

 

5.3.1 Assessing Performance 

 
The section will introduce the results of models in different resolution which will 

demonstrate how the selection of different types of data or labeling can significantly 

affect the performance of machine learning models. The evaluation metrics used in 

section 2, such as precision, accuracy, and Jaccard coefficient, are fundamental 

measures of model performance and can be used to guide the selection of data and 

labeling for training and evaluation. 

 

Deep learning models have become increasingly popular in recent years due to their 

ability to learn complex patterns and relationships in data. However, these models can 

also be sensitive to the type of data and labeling used for training and evaluation. The 

table highlights the importance of careful consideration and selection of appropriate 

data and labeling for achieving optimal performance of deep learning models. 

 

CH 6 Figure 40: The ASPP (Atrous Spatial Pyramid Pooling) 

technique in DeepLab V3+ 
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In summary, the selection of appropriate data and labeling is critical for achieving 

optimal performance of machine learning models, including deep learning models. The 

evaluation metrics used in section 2, such as precision, accuracy, and Jaccard 

coefficient, can help guide this selection process. Careful consideration of data and 

labeling can help ensure that deep learning models perform at their best, enabling 

researchers to extract meaningful insights from complex data. 

 

5.3.1.1 N-RGB resolution of 20 cm per pixel  

 Model Train Val Test Epochs Time(s) Accuracy recall Precision JC DC 
Size 

(MB) 

W 

E 

E 

D 

U-Net 10000 555 556 59 7236 .8569 .8667 .7257 .6465 .7824 26 

U-Net++ 10000 555 556 77 8288 .8562 .8864 .7275 .6609 .7929 24 

U-Net3+ 10000 555 556 78 15600 .8787 .8851 .7645 .6849 .8091 20 

Attention 

U-Net 
10000 555 556 59 7888 .8541 .8679 .7147 .6414 .7796 25 

R2U-Net 10000 555 556 40 13777 .8196 .8358 .6876 .6041 .7479 75 

DeeplabV

3+ 
10000 555 556 46 10809 .8379 .8455 .7091 .6194 .7479 137 

D 

R 

Y 

D

O

W

N 

U-Net 15125 840 841 73 14580 .8405 .8988 .7624 .7005 .8223 26 

U-Net++ 15125 840 841 57 9955 .8417 .8772 .7774 .6986 .8211 24 

U-Net3+ 15125 840 841 35 16572 .8012 .8655 .7272 .6448 .7801 20 

Attention 

U-Net 
15125 840 841 89 16868 .8962 .9256 .8403 .7851 .8789 25 

R2U-Net 15125 840 841 33 11931 .8149 .8768 .7375 .6686 .7993 75 

DeeplabV+ 15125 840 841 23 8299 .8287 .8884 .7441 .6786 .8071 137 

N

D 

U-Net 11250 625 625 104 14826 .9334 .9173 .8877 .812 .8989 26 

U-Net++ 11250 625 625 52 6572 .8488 .8155 .7408 .6311 .7719 24 

U-Net3+ 11250 625 625 43 13100 .7963 .7442 .6631 .5354 .6931 20 

Attention 

U-Net 
11250 625 625 49 7186 .8091 .7777 .6785 .5657 .7213 25 

R2U-Net 11250 625 625 53 17632 .8592 .8445 .7475 .6519 .7877 75 

DeeplabV

3+ 
11250 625 625 22 6085 .8072 .7637 .6766 .5586 .7139 137 

D 
U-Net 5610 311 312 46 4714 .9585 .7395 .7429 .5714 .7237 26 

U-Net++ 5610 311 312 46 3669 .9556 .7177 .7435 .5666 .7215 24 
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O  

U 

P 

L 

E 

U-Net3+ 5610 311 312 53 11008 .9612 .7114 .7498 .5641 .7146 20 

Attention 

U-Net 
5610 311 312 46 3269 .9667 .7904 .7286 .6001 .7477 25 

R2U-Net 5610 311 312 40 6942 .9609 .7373 .7661 .5914 .7391 75 

DeeplabV

3+ 
5610 311 312 20 3064 .9553 .6679 .7113 .5055 .6603 137 

W 

A 

T 

E 

R 

U-Net 1939 107 108 31 1126 .9076 .8871 .7975 .6681 .8001 26 

U-Net++ 1939 107 108 33 1081 .9251 .8815 .8381 .7181 .8351 24 

U-Net3+ 1939 107 108 55 3905 .9342 .8847 .8923 .7954 .8851 20 

Attention 

U-Net 
1939 107 108 31 995 .9143 .9005 .8081 .6907 .8162 25 

R2U-Net 1939 107 108 50 3593 .9377 .9024 .6907 .8092 .8939 75 

DeeplabV

3+ 
1939 107 108 47 3037 .9342 .9084 .8499 .7816 .8761 137 

W 

W

A

Y 

U-Net 3509 195 196 54 3596 .9814 .9331 .8645 .9271 .9545 26 

U-Net++ 3509 195 196 81 4694 .9843 .9539 .8291 .8998 .9471 24 

U-Net3+ 3509 195 196 33 4741 .954 .8397 .8157 .7118 .8306 20 

Attention 

U-Net 

3509 195 196 14 718 .9598 .9071 .8391 .765 .8661 25 

R2U-Net 3509 195 196 45 5867 .9501 .8611 .8111 .7131 .8316 75 

DeeplabV

3+ 
3509 195 196 57 4635 .9721 .9018 .8834 .7921 .8831 137 

P 

S 

U-Net 2339 130 131 49 1723 .9901 .837 .8691 .6738 .8031 26 

U-Net++ 2339 130 131 25 923 .9696 .9067 .6215 .2901 .4361 24 

U-Net3+ 2339 130 131 25 3087 .9801 .7811 .7998 .6189 .7581 20 

Attention 

U-Net 

2339 130 131 40 1473 .9871 .8701 .8691 .6946 .8181 25 

R2U-Net 2339 130 131 46 3854 .9878 .7693 .8078 .6439 .7796 75 

DeeplabV

3+ 
2339 130 131 22 1557 .9781 .7701 .8196 .6457 .7801 137 

E

N

D

R

U-Net 4033 224 225 71 4685 .9785 .9075 .9061 .8266 .9047 26 

U-Net++ 4033 224 225 67 4322 .9651 .3851 .8371 .7191 .8361 24 

U-Net3+ 4033 224 225 78 13590 .9736 .8681 .8872 .779 .8569 20 

Attention 4033 224 225 113 7487 .9765 .8837 .8848 .7901 .8824 25 
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CH 6 Table 2: compare between different models (N-RGB resolution of 20 cm per pixel). 

 

Based on the information provided in the previous section, we can calculate the average 

score of each model across different labels. This approach allows us to obtain an 

overview of the best-performing models. 

Interestingly, the results show that the U-Net model consistently achieves the highest 

score compared to the other models. However, if we use the best model specifically for 

each label, we can further enhance the results by an additional 5 percent. 

 

This finding suggests that by selecting the most suitable model for each specific crop 

issue or label, we can improve the overall performance of the system. It highlights the 

importance of model selection and customization based on the specific characteristics 

and requirements of different agricultural problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1.2 N-RGB resolution of 40 cm per pixel  

O

W 

U-Net 

R2U-Net 4033 224 225 61 8185 .9638 .8137 .8499 .7118 .8314 75 

DeeplabV

3+ 
4033 224 225 88 10227 .9866 .9296 .9455 .8781 .9349 137 

 Model Train Val Test Epochs Time(s) Accuracy recall Precision JC DC 
Size 
(MB) 

W 

E 

E 

D 

U-Net 10000 555 556 92 975 .9451 .9292 .8974 .8353 .9102 26 

R2U-Net  10000 555 556 50 869 .8409 .8406 .7185 .6188 .7645 20 

U-Net3+ 10000 555 556 62 2168 .9256 .8964 .8708 .7883 .8813 75 

D 

R 

U-Net 
15125 840 841 74 1393 .9591 .9604 .9431 .9207 .9488 26 

mIOUmodel 

77.45375best model 1

72.89U-net2

68.51Attention Unet3

68.4125R2U-net4

62.45375U-net+5

61.495Deeplab V3+6

59.28375U-net +++7

CH 6 Table 3: Jaccard coefficient average score over models (res 20 

cm) 
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CH 6 Table 4: compare between different models (N-RGB resolution of 40 cm per pixel). 

Interestingly, like the last section the results show that the U-Net+++ model 

consistently achieves the highest score compared to the other models. However, if we 

use the best model specifically for each label, we can further enhance the results by an 

additional 2 percent. 

Y 

D

O

W

N 

R2U-Net  

15125 840 841 72 1582 .9041 .9102 .8614 .7933 .8847 20 

U-Net3+ 

15125 840 841 56 2295 .9354 .9409 .9068 .8571 .9231 75 

N

D 

U-Net 11977 665 666 108 1248 .9642 .9478 .9409 .8874 .9403 26 

R2U-Net  11977 665 666 41 900 .8283 .8044 .7036 .5974 .7831 20 

U-Net3+ 11977 665 666 93 3759 .9572 .9317 .9283 .8684 .9296 75 

D 

O  

U 

P 

L 

E 

U-Net 5610 311 312 69 395 .9267 .8886 .5146 .2543 .4055 26 

R2U-Net  5610 311 312 49 490 .9658 .7131 .8291 .6078 .7557 20 

U-Net3+ 5610 311 312 64 1153 .9751 .7557 .8641 .6715 .8034 75 

W 

A 

T 

E 

R 

U-Net 1939 107 108 72 199 .9536 .9715 .8677 .7487 .8563 26 

R2U-Net  1939 107 108 46 209 .9459 .9082 .8844 .7616 .8646 20 

U-Net3+ 1939 107 108 63 348 .9656 .9562 .9166 .8751 .9333 75 

W 

W

A

Y 

U-Net 3509 195 196 76 385 .9884 .9646 .9547 .8649 .9274 26 

R2U-Net  3509 195 196 76 464 .9718 .8968 .9043 .8124 .8961 20 

U-Net3+ 3509 195 196 51 562 .9786 .9076 .9386 .8515 .9197 75 

P 

S 

U-Net 2339 130 131 65 182 .9884 .9684 .8074 .3508 .5194 26 

R2U-Net  2339 130 131 52 329 .9876 .7906 .9049 .6617 .7895 20 

U-Net3+ 2339 130 131 70 608 .9927 .8703 .9309 .8071 .8922 75 

E

N

D

R

O

W 

U-Net 4033 224 225 38 192 .8058 .9341 .3363 .2098 .3468 26 

R2U-Net  4033 224 225 44 315 .7869 .7937 .341 .2578 .4099 20 

U-Net3+ 4033 224 225 48 502 .8913 .6932 .5604 .4365 .6077 75 
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CH 6 Table 5: jaccord coefficient average score over models (res40 cm). 

 

5.3.1.3 N-RGB resolution of 80cm per pixel  

 Model Train Val Test Epochs Time(s) Accuracy recall Precision JC DC 
Size 
(MB) 

W 

E 

E 

D 

U-Net 10000 555 556 
72 2720 .9186 .9224 .8467 .7778 .8751 26 

R2U-Net  10000 555 556 
71 4715 .8821 .8751 .7831 .8241 .8241 20 

U-Net3+ 10000 555 556 
86 10860 .9402 .9359 .8941 .8411 .9135 75 

D 

R 

Y 

D

O

W

N 

U-Net 
15125 840 841 

94 6273 .9502 .9532 .9298 .8868 .9411 26 

R2U-Net  

15125 840 841 

74 5915 .9186 .9288 .8836 .8265 .9089 20 

U-Net3+ 

15125 840 841 

64 11126 .9412 .9536 .9115 .8725 .9319 75 

N

D 

U-Net 
11977 665 666 91 3995 .9563 .9413 .9267 .8691 .9299 26 

R2U-Net  
11977 665 666 62 4327 .8528 .8316 .7441 .6436 .7831 20 

U-Net3+ 
11977 665 666 79 10667 .9271 .8992 .8726 .7927 .8841 75 

D 

O  

U 

P 

L 

E 

U-Net 5610 311 312 

54 1186 .9339 .9095 .5576 .2971 .4581 26 

R2U-Net  5610 311 312 

85 2955 .9731 .7727 .8235 .6663 .7997 20 

U-Net3+ 5610 311 312 

46 3219 .9129 .8001 .8379 .6828 .8111 75 

W 

A 

T 

U-Net 1939 107 108 
49 409 .9569 .9691 .8763 .7162 .8346 26 

R2U-Net  1939 107 108 
53 542 .9547 .9086 .9004 .8125 .8966 20 

mIOUmodel 

81.46125best model1

79.90625U-net +++2

74.1175R2U-net3

60.30625U-net4
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CH 6 Table 6: Compare between different models (N-RGB resolution of 80 cm per pixel). 

 

The results show that the U-Net+++ model consistently achieves the highest score 

compared to the other models. However, if we use the best model specifically for each 

label, we can further enhance the results by an additional 2 percent. 

 

 

 

 

 

 

 

 
 

CH 6 Table 7: jaccord coefficient average score over models (res80 cm). 

 

5.3.2 Comparing Model Performance during Training for Train 

Dataset using Jaccard Coefficient and Epochs 

 

E 

R 
U-Net3+ 1939 107 108 

55 1109 .9613 .9575 .8983 .8617 .9257 75 

W 

W

A

Y 

U-Net 
3509 195 196 107 1742 .9924 .9715 .9693 .913 .9545 26 

R2U-Net  3509 195 196 52 1034 .9683 .8952 .8902 .7987 .8879 20 

U-Net3+ 
3509 195 196 65 2531 .9832 .9331 .9425 .8793 .9356 75 

P 

S 

U-Net 2339 130 131 49 461 .9635 .9649 .4726 .1139 .2046 26 

R2U-Net  
2339 130 131 71 1135 .9888 .8294 .8743 .6999 .8217 20 

U-Net3+ 
2339 130 131 53 1704 .9906 .8563 .9101 .7509 .8548 75 

E

N

D

R

O

W 

U-Net 
4033 224 225 45 752 .8178 .9301 .3834 .2506 .4008 26 

R2U-Net  

4033 224 225 78 1617 .9555 .8264 .7879 .6578 .7936 20 

U-Net3+ 

4033 224 225 60 2529 .9604 .8282 .382 .7115 .8313 75 

mIOUmodel 

78.73best model1

76.93U-net +++2

63.88R2U-net3

63.98U-net4
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The figure compares the 

performance of different 

models during training for the 

water dataset. The results show 

that R2Unet, DeeplabV3+, and 

UNet3+ models have achieved 

similar top accuracies, 

indicating that they are 

effective in learning from the 

water dataset during the 

training phase. 

 

 

The figure compares the 

performance of different models 

during training for the Weed 

cluster dataset. The results show 

UNet3+ model has achieved the 

top accuracy, indicating that they 

are effective in learning from the 

Weed cluster dataset during the 

training phase. 

 

 

The figure compares the 

performance of different 

models during training for the 

Double Plant dataset. The 

results show that R2Unet, and 

Attention Unet models have 

achieved similar top 

accuracies, indicating that they 

are effective in learning from 

the Double Plant dataset during 

the training phase. 

 

 

CH 6 Figure 41: (Water) Jaccord coefficient over epoch 

CH 6 Figure 42: (Weed cluster) jacord coefficient over epoch. 

CH 6 Figure 43: (Double Plant) jacord coefficient over epoch 
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The figure compares the 

performance of different 

models during training for the 

Watreway dataset. The results 

show UNet model has achieved 

the top accuracy, indicating 

that they are effective in 

learning from the waterway 

dataset during the training 

phase 

 

 

The figure compares the 

performance of different models 

during training for the dry down 

dataset. The results show 

attention Unet model has 

achieved the top accuracy, 

indicating that they are effective 

in learning from the dry down 

dataset during the training phase. 

 

 

The figure compares the 

performance of different 

models during training for the 

Nutrition Deficiency dataset. 

The results show that deep 

labV3+, and Attention Unet 

models have achieved similar 

top accuracies, indicating that 

they are effective in learning 

from the Nutrition Deficiency 

dataset during the training 

phase. 

 

CH 6 Figure 44: (Watreway) jacord coefficient over 

epoch 

CH 6 Figure 45: (DryDowen) jacord coefficient over 

epoch 

CH 6 Figure 46 (Nutrition Deficiency) jacord coefficient over 

epoch 
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The figure compares the 

performance of different 

models during training for the 

Endrow dataset. The results 

show that R2Unet, 

DeeplabV3+, and attention 

unet models have achieved 

similar top accuracies, 

indicating that they are 

effective in learning from the 

Endrow dataset during the 

training phase. 

 

 

The figure compares the 

performance of different 

models during training for the 

Planter skip dataset. The 

results show that R2Unet 

model have achieved top 

accuracy, indicating that they 

are effective in learning from 

the Planter skip dataset during 

the training phase. 

 

 
This comparison can provide insight into the effectiveness of different models and their 

ability to learn from the training data. A model that performs well during training, as 

indicated by a high JC metric, is more likely to generalize well to new, unseen data. 

 

It is important to note that the optimal number of epochs for training a model may vary 

depending on the specific task and dataset. Therefore, it is recommended to experiment 

with different values for the number of epochs and other hyperparameters to find the 

optimal configuration for a given task. 

 

5.3.2 Comparative Study for the Prediction 

The provided images demonstrate the performance of various models, such as U-Net, 

U-Net++, DeepLabV3+, and others. Each model's prediction is visualized alongside the 

original RGB image and the ground truth mask to evaluate how effectively they can 

accurately segment objects or regions of interest in the images. 

5.3.2.1 Water 

Figure 48: (Planter skip) jacord coefficient over epoch 

CH 6 Figure 47: (Endrow) jacord coefficient over epoch 
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5.3.2.2 Weed_Cluster 
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5.3.2.3 Water Way 
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5.3.2.4 Dryness 
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5.3.2.5 Endrow 
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5.3.2.6 Double Plant 
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5.3.2.7 Planter Skip 
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5.3.2.8 Nutrition Deficiency  
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5.3.3 Prediction in Large Scale  

In this project, our main focus is to empower our solution for large-scale 

implementation and accurately predict the affected area. By scaling up our solution, we 

can effectively analyze remote sensing images over extensive geographic areas and 

provide precise information on the impacted reign. 

 

The farmland (QEQNXLHLY) is a 463 square kilometer area, with weed clusters as a 

major issue. To address this problem, the image of the farmland is divided into smaller 

patches (256x256 pixels) and analyzed using a suitable model to identify and classify 

weed clusters. The individual patch predictions are then combined to reconstruct the 

full-size image. The affected areas are visualized by overlaying contours or highlights, 

revealing a total weed-affected area of 73 square kilometers. 



 
Page | 124 

 

 

 

 

 

 

Farmland ID: XNPZW9H1J 

• Size: 2231 pixels by 5364 pixels 

• Total area: 119.67 square kilometers 

• Affected area: 48.16 square kilometers. 
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5.4 5. Conclusion 

 
In conclusion, the integration of aerial imagery and deep learning techniques in 

agriculture offers significant potential for precise detection of anomalies in crop 

patterns. The utilization of advanced models such as U-Net++, Recurrent U-Net, and 

Recurrent Residual U-Net with Attention gate improves semantic segmentation 

accuracy. This enables timely intervention and optimized resource allocation, leading 

to improved crop health and productivity. The adoption of precision agriculture 

practices, supported by deep learning, contributes to sustainable and efficient crop 

management, addressing global challenges in food production. Continued research in 

this field can further enhance anomaly detection and decision support systems, 

benefiting farmers worldwide. 
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7 WATER RESOURCES ANALYSIS 

 
 

 ABSTRACT 
 

Analysis of water resources and long-term trends in all regions of the earth is important 

for understanding the impact of climate change, particularly in monitoring drought 

conditions. Private households, agriculture, and other industries heavily rely on stable 

water supplies, which make it necessary to monitor and predict changes in water 

resources. In general, remote sensing technology plays a crucial role in water resource 

analysis, allowing us to monitor, understand, and predict changes in water resources 

data from different satellite missions and LDAS. By developing and utilizing advanced 

analytical tools and models, we can gain valuable insights into the state of water 

resources globally and support decision-making processes for sustainable development. 

The SMAP and GRACE missions have proven to be invaluable tools in water 

resources analysis and drought monitoring, providing valuable information for water 

resource management. By combining remote sensing data with other data sources such 

as satellite-based rainfall estimates, surface temperature, vegetation indices, 

atmospheric data, and ground measurements, comprehensive drought monitoring tools 

can be developed, providing crucial insights into the state of water resources, and 

guiding effective water resource management strategies. While limitations of remote 

sensing data should be considered, its importance in water resource analysis and 

drought monitoring cannot be overstated. With the growing scarcity of water resources, 

the use of remote sensing data is likely to become even more important in the coming 

years, providing crucial insights into the state of water resources and guiding effective 

water resource management strategies, including early warning systems, drought 

impact assessment, and decision-making support. 

The drought monitor is an essential tool for managing the impacts of drought. It 

provides early warning, informs resource management decisions, helps with disaster 

preparedness, and supports policy development. With increasing frequency and 

severity of droughts due to climate change, the drought monitor is becoming even more 

critical for mitigating the impacts of drought and ensuring the sustainable use of nature. 

 

1. Introduction  
 

Water is a vital resource for human life, supporting ecosystems and agricultural 

production. However, water resources are facing increasing pressure due to population 

growth, climate change, and unsustainable water use practices. To effectively manage 

water resources, it is necessary to monitor and understand how water is distributed 

across the planet. One important tool for this is the Soil Moisture Active Passive 

(SMAP) mission. 

NASA launched the SMAP mission in 2015, designed to provide global measurements 

of soil moisture with high spatial accuracy. The mission uses active and passive 

microwave sensors to measure soil moisture, where the active sensor emits microwave 
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pulses, and the passive sensor measures the natural microwave emissions from the 

Earth's surface. By combining these measurements, the SMAP mission can provide 

extremely accurate maps of soil moisture, which are essential for monitoring drought 

conditions and managing water resources. 

The data provided by the SMAP mission can be used to calculate a range of drought 

indices, which are important for monitoring and managing water resources. One of 

these indices is the Standardized Precipitation Index (SPI), which measures the 

deviation of rainfall from the long-term average. By using SMAP data to calculate SPI, 

it is possible to identify areas experiencing drought conditions and track the severity 

and duration of these conditions over time. 

The Drought Monitor is a tool that uses a variety of data sources, including SMAP data, 

to provide accurate and timely information about drought conditions throughout the 

world. The Drought Monitor is produced weekly and provides an overview of current 

drought conditions, as well as trends over time. The tool is used by a range of 

stakeholders, including farmers, water managers, and policymakers, to make decisions 

about water allocation and management. 

The world is generally facing many problems caused by drought, such as its significant 

impact on agriculture, ecosystems, and human health. On the other hand, it can lead to 

crop failure, wildfires, and water shortages, and can have long-term effects on soil 

health and water availability. By providing accurate and timely information about 

drought conditions, the Drought Monitor enables stakeholders to take proactive 

measures to mitigate the effects of drought and manage water resources more 

effectively. 

In this research paper we will use remote sensing techniques, Aws cloud techniques 

and data analysis techniques to analyze SMAP data to monitor soil moisture levels and 

detect drought conditions to help us in creating drought monitor from collect SMAP 

data, calculate soil moisture anomalies and generate drought maps all this step will help 

us to make simplified demonstration of climate change effects Through historical trends 

techniques, our Drought Monitor provides historical data on drought conditions, which 

can be used to demonstrate how droughts have become more frequent or severe over 

time due to climate change. 

 

2. Literature Review 
 

2.1 Introduction  
 

This section demonstrates the usefulness and reliability of the SMAP L4_SM data 

product for various applications, including drought monitoring, hydrological modeling, 

and agricultural management. The studies also highlight the importance of validating 

the SMAP L4_SM data product using ground-based observations and other 

independent data sources to ensure its accuracy and reliability.  

Based on a review of literature on SMAP L4 soil moisture data analysis, several 

methods have been identified for analyzing this dataset. These methods include: 
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1. Quality control and data processing: Before performing any analysis, it is 

important to ensure that the data is of high quality and has undergone appropriate 

processing. Quality control measures such as outlier detection, error correction, and 

data validation can be used to ensure the accuracy and reliability of the data. 

2. Statistical analysis: Statistical techniques such as correlation analysis, regression 

analysis, and principal component analysis can be used to explore the relationships 

between soil moisture and other environmental variables. These techniques can also be 

used to identify trends and patterns in the data. 

3. Spatial analysis: Spatial analysis techniques such as geostatistics and spatial 

interpolation can be used to generate spatially continuous maps of soil moisture. These 

maps can reveal the spatial patterns and variability of soil moisture across a region. 

4. Machine learning and artificial intelligence: Machine learning algorithms and 

artificial intelligence techniques such as neural networks, support vector machines, and 

random forests can be used to predict soil moisture levels based on historical data and 

environmental variables. These models can also be used to generate future projections 

of soil moisture levels under different scenarios. 

5. Time-series analysis: Time-series analysis techniques such as autoregressive 

integrated moving average (ARIMA) and wavelet analysis can be used to explore the 

temporal patterns and variability of soil moisture data. These techniques can also be 

used to identify trends and cycles in the data. 

Overall, the combination of these methods allows for a comprehensive analysis of 

SMAP L4 soil moisture data, which can provide insights into the dynamics of soil 

moisture and its environmental implications. 

 

2.2 Multi-Scale Assessment of SMAP Level 3 and Level 4 Soil Moisture Products 

over the Soil Moisture Network within the ShanDian River (SMN-SDR) Basin, 

China 

 

The SMAP L4 products are obtained by assimilating TB data from SMAP datasets into 

a modified version of the GEOS-5 LDAS algorithm using a spatially distributed 

ensemble Kalman filter. The SMAP L1C TB and surface meteorological controlling 

inputs are the principal drivers of this system. The SMAP SM retrieval algorithm is 

affected by various parameters such as surface temperature, vegetation, and surface 

roughness, which can cause uncertainties in the SM estimates. To validate the SMAP 

SM products, complementary methodologies such as core validation measurements, 

sparse network, model-derived products, other satellites datasets, and field operations 

are being used. This study focuses on validating SMAP SM products across the 

ShanDian River Basin using in situ data acquired by the SMN-SDR network and 

evaluating the L3 and L4 SMAP SM products compared with in situ observations. The 

study also evaluates SMAP SM products across the SMN-SDR Basin under different 

vegetation types and spatial-temporal scales.[1] 
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2.2.1 Materials and Methods 

 

1. Study Domain and Ground Observation Network and Datasets 

This study utilized in situ soil moisture data from the wireless Soil Moisture Network 

(SMN-SDR) within the ShanDian River Basin in the North China region. The network 

consisted of 34 stations with 3 sample scales and 5 measuring depths, and Decagon 

EM50 sensors were used to estimate SM. The data recording time period was 10 and 

15 minutes, and the data sets recorded from the sensors only included raw data. The 

SMN-SDR also provided multi-layer soil temperature and other meteorological 

variables such as precipitation. The SMN-SDR in situ SM data was already calibrated 

and validated with ground truth SM data. In this research work, the SMN-SDR SM data 

at 5-cm depths from July 2018 to December 2019 was used to validate L3 SMAP_E 

and L4 SMAP_GAU (SSM) data, and 50 cm was used to validate Level 4 SMAP_GAU 

(RZSM) data.[1][2] 

 

 

2. SMAP Soil Moisture Products 

This study evaluated two SMAP soil moisture (SM) products, Level 3 enhanced SMAP 

radiometric SM (SPL3SMP_E) and Level 4 SMAP SSM and RZSM (SPL4SMGP), for 

SM estimation from January 2018 to December 2019. SMAP captures global brightness 

temperature (TB) with a spatial resolution of 36 km and a temporal resolution of 3 days 

using an L-band radar and radiometer. The SPL3SMP_E products provide daily global 

SSM (5 cm depth) estimates, and the SPL4SMGP product provides instantaneous SM 

at 3-hourly time-averaged from assimilation system for both layers, surface (0–5 cm), 

and root-zone (0–100 cm). The SPL3SMP_E products were already excluded from 

areas with adverse climatic conditions. The NSIDC website provides free access to all 

datasets.[1][2] 
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CH7 Figure 1 

The ShanDian River Basin and the Network within the ShanDian River Basin (SMN-SDR), (a) land 

use   map of the study area, (b) providing in situ SM measurements at a small scale (red circles within 

the red rectangles), medium scale (blue triangles within the blue rectangles), and large scale (green 

squares within the rectangles). 

3. Statistical Analysis  

This study qualitatively evaluated SMAP soil moisture (SM) products, SPL3SMP_E 

and SPL4SMGP, using statistical metrics such as unbiased root mean square error 

(ubRMSE), correlation coefficient (R), anomaly R, and mean bias. The evaluation was 

conducted at 2 spatial scales: core validation sites (CVSs), which provide all stations 

within an SMAP product grid-cell with a 9-km resolution, and a sparse network of M-

scale and L-scale stations, which provide a point-scale measurement containing only 1 

station within an SMAP product grid-cell (9-km). The metrics were validated using the 

in-situ Soil Moisture Network (SMN-SDR) topsoil layer (0-5 cm) measurements for 

SPL3SMP_E and SPL4SMGP SSM estimations and the arithmetic mean of SMN-SDR 

network observations in the up to 50 cm soil layer for SPL4SMGP RZSM. The 

difference in soil depths across SMAP products had minimal impact on the evaluation, 

as demonstrated using limited in situ measurements in the study region.[2][3] 
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2.2.2 Results 
 

1. Evaluation of the SPL4SMGP Surface and Root-Zone Soil Moisture 

 The evaluation of the SPL4SMGP SSM and RZSM products at different spatial scales 

using in situ data from a total of 34 ground sites. The study found that the SPL4SMGP 

SSM and RZSM estimates were underestimated and overestimated, respectively, 

compared to the in-situ observations. The product accuracy requirement (ubRMSE 

value less than 0.04 m3/m3) was met by all spatial scale stations for both SPL4SMGP 

SSM and RZSM products. The SPL4SMGP SSM products showed a good correlation 

value of 0.78, while the SPL4SMGP RZSM products showed a lower correlation value 

of 0.63. The performance of the SPL4SMGP SM datasets over the sparse network (M 

and L scales) showed better results than the core validation site (S scale). Overall, the 

study found that the SPL4SMGP SSM and RZSM products performed well in meeting 

their product accuracy requirements at all spatial scales.[1][4] 

 

2. Evaluation of SPL3SMP_E Ascending and Descending SM 
The accuracy of the SMAP satellite's SPL3SMP_E SM products at different spatial 

scales using in situ data from 34 validation sites. The study found that the SPL3SMP_E 

a.m. SM datasets performed well in meeting the product accuracy requirements, with 

good evaluation results corresponding to rainfall events. In contrast, the SPL3SMP_E 

p.m. SM datasets showed less accuracy, with larger errors and lower correlation values. 

The study also found that the satellite SM products performed better for sparse network 

sites than core sites, reflecting vegetation cover's adverse influence over satellite SM 

observations.[1][4] 

                 

3. Comparison of SPL3SMP_E and SPL4SMGP Surface Soil Moisture 
Compared the accuracy of the SPL3SMP_E and SPL4SMGP SSM products from the 

SMAP satellite at different spatial scales using in situ data from 34 validation sites. The 

study found that the SPL4SMGP SSM retrievals performed better than the 

SPL3SMP_E SM estimates, with lower ubRMSE values and higher correlation values. 

The study also found that the satellite SM products performed better at sparse network 

sites than core validation sites. Overall, the study highlights the benefits of integrating 

satellite-based SM and LSM using data assimilation techniques to produce optimized 

results.[1][4] 
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CH7 Figure2  

Show the Evaluation of the SPL4SMGP Surface and Root-Zone Soil Moisture, Evaluation of SPL3SMP_E 

Ascending and Descending SM, Comparison of SPL3SMP_E and SPL4SMGP Surface Soil Moisture 

 

2.3 Standardized Soil Moisture Index for Drought Monitoring Based on Soil 

Moisture Active Passive Observations and 36 Years of North American Land Data 

Assimilation System Data: A Case Study in the Southeast United States 

 

2.3.1 Introduction  

The southeastern United States is vulnerable to regional-scale droughts caused by 

climate variability, which affects agriculture, forestry, and rangelands. The USDA and 

the Southeast Regional Climate Hub (SERCH) provide science-based knowledge and 

tools to help farmers, ranchers, and foresters cope with climate issues in the southeast. 

SERCH uses a drought mitigation tool called LIGHTS, which is driven by NOAA's 

Climate Prediction Center's Monthly Drought Outlook, Monthly Temperature and 

Precipitation Outlook, and Risk of Seasonal Climate Extremes in the US related to El 

Niño–Southern Oscillation (ENSO). However, LIGHTS do not include soil moisture 

indices in the prediction model, and integrating soil moisture data can significantly 

enhance the reliability and accuracy of the model. Various soil moisture retrieval 

methods and indices have been proposed in previous research, but they have limitations 

in accuracy, applicability, and scalability. To address these limitations, researchers 

propose a new soil moisture index called the standardized soil moisture index (SSI) for 
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drought warning. SSI incorporates data from the Soil Moisture Active Passive (SMAP) 

satellite and the North American Land Data Assimilation System (NLDAS) and 

identifies droughts as statistical outliers in the time series of soil moisture. The 

integration of SMAP and NLDAS data into SERCH LIGHTS is expected to improve 

the extent and accuracy of drought prediction models.[5] 

          

CH7 Figure 3 

2.3.2 Materials and Methods 

  

1. Data Acquisition 
  

Here we utilized three different datasets to develop a new soil moisture index for 

drought warning. The first dataset was obtained from the Level 3 soil moisture data 

from L-Band Radiometer on board the NASA satellite (SMAP). This dataset provides 

direct soil moisture measurement at 6 AM local solar time in the top 5-cm layer of the 

soil column. The second dataset was obtained from soil moisture data from the NASA 

North American Land Data Assimilation System (NLDAS). This dataset measures the 

top 10-cm soil moisture and has a time zone of Coordinated Universal Time (UTC), 

which has an overall six-hour time difference compared with the SMAP local solar 

time. The third dataset came from the Soil Climate Analysis Network (SCAN), which 

collects soil moisture data from probes placed at 5.08 cm depth across the United States. 

The USDA National Resources Conservation Service provides the SCAN dataset. The 

researchers used these datasets to develop a new soil moisture index called the 

standardized soil moisture index (SSI) for drought warning. The SSI identifies droughts 

as statistical outliers in the time series of soil moisture.[5] 
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CH7 Figure4 Data Description 

 

2. Data Processing 

SMAP reached its orbit in January 2015, and the data were available since 1 April 2015. 

Therefore, only less than two years of data have been recorded at the time of this study. 

The pre-processing of the SMAP data removed invalid values and outliers. The units 

of SMAP and NLDAS soil moisture do not match. SMAP measures the volume of water 

per unit volume of soil.  

NLDAS measures soil moisture in units of kilogram per square meter of soil over 

variable thicknesses.  Next equation converts the unit of NLDAS to the volume ratio 

that is similar to SMAP units. 

 

This study noticed the inconsistency of the soil depth measured by the NASA North 

American Land Data Assimilation System (NLDAS) and the Level 3 soil moisture data 

from L-Band Radiometer on board the NASA satellite (SMAP). The NLDAS measures 

the top 10 cm of the soil, 5 cm deeper than that of SMAP. To address this inconsistency, 

the researchers used a linear transformation to calibrate the two datasets. The calibration 

coefficients between NLDAS and SMAP are listed in Table A1, which can be found in 

Appendix A. The researchers also used a formula that considers the original soil 

moisture value, density of water, and thickness of soil to calculate the standardized soil 

moisture index (SSI) for drought warning.[5] 

3. Data Analysis 

 

For each Julian day, there are 36 NLDAS observations from the past 36 years. We were 

able to calculate the mean and standard deviation of each day. The daily SSI was 

calculated with Equation (2): 

                                         

Where xSMAP is the soil moisture content from SMAP Level 3 data for a single 

day, μNLDAS is the mean value of soil moisture content for the corresponding day from 

NLDAS, and σNLDAS is the standard deviation. 
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4. Validation 

The SMAP mission specifies the accuracy of soil moisture to be within 0.04 (4%) 

m3/m3 volumetric in low or moderately vegetated areas in the following conditions. 

• Vegetation water content ≤ 5 kg/m2 

• Urban fraction ≤ 0.25 

• Water fraction ≤ 0.1 

• Digital Elevation Model (DEM) slope standard deviation ≤ 3 degrees 

 

This study aimed to validate the soil moisture product obtained from the Level 3 

soil moisture data from L-Band Radiometer on board the NASA satellite (SMAP) 

and the NASA North American Land Data Assimilation System (NLDAS) in the 

southeastern United States. The researchers selected seven Soil Climate Analysis 

Network (SCAN) stations located in agricultural lands, plains, or grasslands and 

representative of diverse weather conditions to compare the daily soil moisture data 

from SMAP and NLDAS to daily soil moisture data retrieved from the SCAN 

stations from 31 March 2015 to 16 July 2016. Additionally, the researchers 

compared the SCAN data and NLDAS data for 12 months, starting in January 2015 

and ending in December 2015, to validate the soil moisture product. 

 

 

CH7 Figure 5 Soil Climate Analysis Network (SCAN) station used for validation. 

 

 

SSI was validated by several soil moisture products, including PDSI and MODIS 

data. PDSI data for April 2015 were downloaded as NetCDF files in the WGS 1984 

Geographic Coordinate System from the National Integrated Drought Information 

System on the U.S. Drought Portal. We derived a normalized difference water index 

(NDWI) from MODIS surface reflectance data.         
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Where NIR is the near infrared reflectance and SWIR is the short-wave infrared 

reflectance of the MODIS data. Both PDSI and NDWI data were resampled to 36 km 

for the SSI validation.[5] 

2.3.3 Results 
 

1. SSI Spatial Analysis 

This study used SMAP data to develop a standardized soil moisture index (SSI) for 

drought warning. The SSI is a z-score that measures how many standard deviations a 

SMAP value is from the historic mean. The SSI results were visualized using a color 

scale, where yellow to red colors indicate negative z-scores, and green to blue colors 

indicate positive z-scores. 

 

CH7 Figure 6 Mosaic of the three consecutive standardized soil moisture index (SSI) maps from 1 to 3 April 

2015. Areas in yellow to red represent areas that are experiencing very dry conditions, indicating drought. (b) SSI 

map for the whole month of April 2015. 

 

2. Validation with PDSI and NDWI 

PDSI is a standardized index that spans −10 (dry) to +10 (wet) [34]. 

Areas in yellow and red represent areas that are experiencing dry conditions; (b) 

Normalized difference water index (NDWI) calculated for 01 to 03 April 2015. 

Likewise, areas in yellow and red represent areas that are experiencing low vegetation 

water content and therefore a dry condition.[5] 
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3. Methodology 
In this section, we provide a comprehensive overview of the methods we used to 

analyze water resources, especially soil moisture data analysis, and to create a drought 

monitoring system that can be used to monitor and manage water resources during 

periods of drought. Our methodology includes a range of scientific and technical 

approaches, including data processing, quality control, modeling, validation, spatial 

analysis, and data visualization. These techniques are used to provide valuable 

information for drought monitoring, flood prediction, and water resource management. 

Our methodology can also be adapted to different regions and applications, providing 

a flexible and robust tool for soil moisture science and drought management. 

 

3.1 Dataset  
Our primary objective is to detect and analysis water resources, and to achieve this, we 

emphasize the use of soil moisture data. We have identified several techniques to 

acquire and extract this data, including:  

1. Ground-based sensors: These sensors are installed in the ground to directly 

measure the moisture content. They can be placed at different depths and 

locations to provide a spatially distributed measurement of soil moisture. 

2. Satellite data: Satellite-based sensors, like the SMAP mission, offer global 

coverage of soil moisture levels. They use microwave radiation to estimate soil 

moisture levels and provide data at regular intervals. 

3. Aircraft-based sensors: These sensors are installed on aircraft and can measure 

soil moisture levels from the air. They provide high-resolution data over specific 

areas and can be used for research or monitoring purposes. 

4. Portable soil moisture meters: These meters can measure soil moisture levels 

at specific locations and are easy to use. They provide quick measurements of 

soil moisture levels. 

5. Weather stations: Some weather stations are equipped with soil moisture 

sensors that measure soil moisture levels in addition to other weather variables, 

such as temperature, humidity, and precipitation. 

6. Soil maps: These maps provide estimates of soil moisture levels based on soil 

type and other soil properties. They can be used to estimate soil moisture levels 

for large areas. 

 

The choice of method will depend on factors such as the level of accuracy required, the 

spatial and temporal resolution needed, and the resources available for data acquisition 

and processing. 

To meet our objective of providing global coverage of soil moisture data, we used 

satellite data and there are two choices to get soil moisture data.[6] 
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5.1.1 Availability of soil moisture data  
 

 

 

we utilized satellite data from the SMAP mission. This mission was chosen due to its 

high accuracy and availability for data acquisition and processing and for availability 

of data with binary format HDF5 (Science Values) that help us in our research and 

Application, which align with our motivation.[9][8] 

 SMAP JAXA 

 

 

 

 

 

 

 

Specifications  

1. Parameter(s): Root zone soil 

moisture surface soil moisture 

2. Platform(s): GEOS-5, SMAP 

3. Sensor(s): not application, 

SMAP L-BAND 

RADIOMETER 

4. Data Format(s): HDF5 

5. Temporal Coverage:31 March 

2015 to present. 

6. Temporal Resolution:3 hour 

7. Spatial Resolution:9 km x 9 

km 

8. Spatial Coverage: N:85.044, 

S: -85.044, E:180, W: -180 

 

1. Parameter(s): Brightness Temperature Soil 

Moisture / Water content   

2. Platform(s): GCOM-W1 

3. Sensor(s): AMSR2 

4. Data Format(s): HDF-EOS5 

5. Temporal Coverage:2 July 2012 to present. 

6. Temporal Resolution:50 minute 

7. Spatial Resolution:25 km x 25km 

8. Spatial Coverage: N:89.24, S: -89.24, 

E:180, W: -180 

 

 

   Advantages  

1.High accuracy 

2.High spatial resolution 
  

1.High temporal resolution 

2.Integration with other data 

 

 

Disadvantages 

1.Limited spatial resolution 

2.Limited data availability 

 

1.Lower accuracy 

2.Lower temporal resolution 

 

 

 
 

 

CH7 Figure 7: SMAP Satellite. 

 

 

 
 CH7 Figure 8: JAXA Satellite 

 

 

 

 CH7 Table 1 
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3.1.2 HDF5 (Hierarchical Data Format version 5)  

is a file format for storing and organizing large and complex datasets. It is a binary 

format that is designed to be platform-independent, meaning that HDF5 files can be 

read and written on different operating systems and with different programming 

languages. 

HDF5 files consist of two main components: datasets and attributes. A dataset is a 

collection of data elements organized in a multidimensional array, while an attribute is 

a metadata object that provides additional information about the dataset. HDF5 files 

can also contain groups, which are hierarchical structures that can contain datasets, 

attributes, and other groups. 

HDF5 is commonly used in scientific and engineering applications for storing and 

sharing large datasets, such as satellite imagery, climate data, and simulation results. It 

provides a flexible and efficient way to store and access complex data, as well as a rich 

set of tools and libraries for working with HDF5 files in different programming 

languages, including C, C++, Python, and MATLAB.[7][9] 

 

3.2 SMAP Mission Satellite 

3.2.1 SMAP mission overview 

The Soil Moisture Active Passive (SMAP) mission is an orbiting observatory that 

measures the amount of water in the surface soil everywhere on Earth. 

It was launched in January 2015 and started operation in April 2015. The SMAP 

radiometer has been operating flawlessly. The radar instrument, ceasing operation in 

early 2015 due to failure of radar power supply, collected close to 3 months of science 

data. The prime mission phase of three years was completed in 2018, and since then 

SMAP has been in extended operation phase. 

SMAP is designed to measure soil moisture, every 2-3 days. This permits changes, 

around the world, to be observed over time scales ranging from major storms to 

repeated measurements of changes over the seasons. 

Everywhere on Earth not covered with water or not frozen, SMAP measures how much 

water is in the top layer of soil. It also distinguishes between ground that is frozen or 

thawed. Where the ground is not frozen, SMAP measures the amount of water found 

between the minerals, rocky material, and organic particles found in soil everywhere in 

the world (SMAP measures liquid water in the top layer of ground but is not able to 

measure the ice.) 

SMAP will produce global maps of soil moisture. Scientists will use these to help 

improve our understanding of how water, energy, and carbon fluxes (in its various 

forms) maintain our climate and environment. The water cycle involves more than the 

obvious processes cycling through the steps of evaporation from the oceans and land to 

condensation forming clouds that then drop rain or snow on the ground (precipitation), 

followed by the water flowing across the land before returning to the sea. For example, 

plants absorb water from the soil to grow, but they also “transpire” some of it straight 

back into the air. 
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Frequent and reliable soil moisture measurements from SMAP will help improve the 

predictive capability of weather and climate models.[6][9] 

3.2.2 SMAP mission Specifications [9] 
 

a) Polar Orbit: Altitude_ 685 km  

b) Spatial Coverage: Global  

c) Launched Jan 31, 2015  

d) Temporal Coverage: April 2015 – present  

e) Sensors: Microwave  

                Radiometer  

               Microwave Radar (not currently available) 

 

CH7 Table 2 

 

 

3.2.3 SMAP mission objective 

SMAP will provide a capability for global mapping of soil moisture and freeze/thaw 

state with unprecedented accuracy, resolution, and coverage. SMAP science objectives 

are to acquire space-based hydrosphere state measurements over a three-year period to: 

• Understand processes that link terrestrial water, energy, and carbon cycles. 

• Estimate global water and energy fluxes at the land surface. 

• Quantify net carbon flux in boreal landscapes. 

• Enhance weather and climate forecast skill. 
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• Develop improved flood prediction and drought monitoring capabilities.[6] 

 

CH7 Figure 9 

 

                                                                                                                         

3.3 Soil Moisture Data Product 
The Soil Moisture Active Passive (SMAP) L4 data products are the highest level of 

data products produced by the SMAP mission. These products are derived from the 

SMAP Level 1C and Level 2 data and provide estimates of soil moisture and vegetation 

water content at a spatial resolution of approximately 9 km. 

There are two types of SMAP L4 data products: the Soil Moisture Analysis Ready Data 

(SM-ARD) and the Soil Moisture Active Passive Enhanced L4 (SMAPL4_E).  

The SM-ARD product is a daily global product that provides estimates of soil moisture 

at a depth of 5 cm and vegetation water content. These estimates are provided in two 

different formats: (1) as retrievals based on a physical model that combines SMAP L1C 

and L2 data with ancillary data and (2) as analyses that are based on a land surface 

model that assimilates the retrievals along with other data sources. The SM-ARD 

product is available from April 1, 2015, to the present. 

The SMAPL4_E product is a research product that provides estimates of soil moisture 

at a depth of 5 cm, surface soil moisture, and vegetation water content at a spatial 

resolution of approximately 3 km. This product is generated using a data assimilation 

technique that combines SMAP L1C and L2 data with other data sources such as 

precipitation and temperature data. The SMAPL4_E product is available from April 1, 

2015, to the present, but it is not yet an operational product. 

Overall, these SMAP L4 data products provide valuable information on soil moisture 

and vegetation water content for a range of applications, including hydrologic 
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modeling, drought monitoring, and agricultural management.[9]     

 

CH7 Table 3: SMAP product 

 

Table4 specifies several important characteristics of the SMAP baseline data products. 

Among these are: 

• the product short name – these names provide a shorthand method to 

differentiate among the products. 

• a very brief product description – additional SMAP project documents 

provide complete specifications of the format and the content of each data 

product; the SMAP DAACs have made these documents available to the 

user community. 

• product spatial resolution or grid posting – the resolution of some Level 1 

products is based on the size of the Instantaneous Field of View (IFOV) of 

the radar or radiometer instrument, while the resolution of higher-level 

products is based on the selected grid spacing. 

• product latency to the user community – latency measures the time between 

the acquisition of the first element in the data product and the time the 

product is available for use at one of the SMAP Data Centers. Although the 

latencies listed in Table 2 are being used by the project to construct the data 

processing system, the SMAP project will do its best to deliver products 

sooner, whenever possible [9] 
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3.3.1 SMAP L4_SM 

       Soil Moisture [Surface and Root Zone]   

3.3.1.1 Main objective of SMAP L4_SM product 

1. to provide estimates of root zone soil moisture (defined here nominally as soil moisture 

in the top 1 m of the soil column) based on SMAP observations. 

2. to provide a global surface and root zone soil moisture product that is spatially and 

temporally complete. 
 

These objectives address two limitations of the SMAP Level 2 soil moisture products, 

which provide soil moisture estimates only for the surface layer (~top 5 cm of the soil) 

and only at times and locations where soil moisture can be observed by SMAP sensors 

(subject to orbit and land surface characteristics) 

3.3.1.2 Limitation of SMAP L4 data products for soil moisture analysis  

While SMAP L4 data products provide valuable information on soil moisture and 

vegetation water content, there are several limitations that must be considered when 

using these data products for soil moisture analysis. Some of these limitations are: 

1. Spatial resolution: The spatial resolution of SMAP L4 data products is approximately 

9 km for the SM-ARD product and 3 km for the SMAPL4_E product. This may not be 

sufficient for some applications that require higher spatial resolution data, such as 

agricultural management or urban hydrology. 

2. Temporal resolution: SMAP L4 data products are available daily, but they may not 

capture the short-term variability of soil moisture that occurs during precipitation events 

or irrigation events. 

3. Vegetation effects: SMAP L4 data products provide estimates of both soil moisture 

and vegetation water content, but the accuracy of the vegetation water content estimates 

may be affected by the presence of dense vegetation cover. 

4. Soil texture effects: SMAP L4 data products provide estimates of soil moisture at a 

depth of 5 cm, but the accuracy of these estimates may be affected by the soil texture. 

Soils with high clay content, for example, may have different soil moisture dynamics 

compared to soils with high sand content. 

5. Data gaps: SMAP L4 data products may have gaps due to cloud cover, data 

processing errors, or other issues. These gaps can limit the usefulness of the data for 

some applications. 

It is important to consider these limitations when using SMAP L4 data products for soil 

moisture analysis and to evaluate the suitability of these data products for specific 

applications. Additionally, there may be opportunities to address some of these 

limitations using complementary data sources or through the development of new 

analysis methods.[10][11] 

 

3.3.1.3 Product Characteristics [10][11] 

The baseline L4_SM product is derived from the downscaled (9 km) brightness 

temperatures provided with the Level 2 Radar and Radiometer Soil Moisture 

(L2_SM_AP) product. 
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1. Geophysical parameters 

 

a) Surface soil moisture (0-5 cm vertical average).  

b) Subsurface (or “root zone”) soil moisture (0-100 cm vertical average). 

c) Additional research products (not validated), including surface 

meteorological forcing variables, soil temperature, evaporative fraction, net 

radiation, etc. and error estimates for select output fields that are produced 

internally by the L4_SM algorithm. 

 

 2. Spatial resolution, posting, and coverage 

The geophysical parameters of L4_SM will be obtained and posted on the SMAP Earth-

fixed global grid with a resolution of 9 km, in accordance with the EASE (version 2) 

grid used for other SMAP products, as described in Reichle et al. (2014b). 

 

 3. Temporal resolution and sampling 

a) the land model computational time step (7.5 min).  

b) the EnKF analysis update time step. 

c) the reporting (or output) time step for the instantaneous and time average 

geophysical fields that are stored in the L4_SM data product. 
 

The EnKF analysis update step will assimilate the available SMAP observations at the 

nearest 3-hourly analysis time, which includes 0z,3z, and so on up to 21z. Geophysical 

parameters will be provided as 3-hourly averages between these update times, 

according to Reichel et al. (2014b).  

4. Latency 

The L4_SM product must be produced within 7 days of satellite data acquisition after 

the 3-month In-Orbit Checkout period of the SMAP observatory. Output will be 

delivered once daily with a mean latency of approximately 3 days based on the 

availability of daily-average precipitation observations. A beta-version L4_SM product 

must be delivered 6 months after IOC, and the validated product will be delivered after 

the 12-month Calibration/Validation phase, which covers the first twelve months after 

IOC. 

 5. Error estimate 

The data assimilation system dynamically determines error estimates of the assimilation 

product by weighing the relative errors of assimilated SMAP brightness temperature 

observations and the corresponding land model forecast. The accuracy of the error 

estimates depends on the input error parameters and needs to be validated. 

Instantaneous error fields will be provided for selecting variables as part of the Analysis 

Update Data File Collection, derived from the ensemble standard deviation of the 

analyzed fields, and varying in space and time. 
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3.3.2 L4_SM Algorithm 

 

The L4_SM algorithm is based on two main components adapted from the Goddard 

Earth Observing Model System, Version 5 (GEOS-5):  

a) the GEOS-5 Catchment land surface model, which provides a numerical representation 

of the water and energy transport processes at the land-atmosphere interface, including 

a land surface microwave radiative transfer model. 

b)  the GEOS-5 ensemble-based land data assimilation system.  

The latter merges SMAP observations with estimates from the land model, driven 

by observation-based surface meteorological forcing data that includes a soil 

moisture analysis based on the ensemble Kalman filter and a rule-based freeze/thaw 

analysis. Assimilation of downscaled (9-km) brightness temperatures (L2_SM_AP) 

will occur when and where available, supplemented with 36-km brightness 

temperature observations (L1C_TB; ascending and descending passes) when 

downscaled data are unavailable. Additionally, 3-km freeze/thaw observations 

(L3_FT_A) will also be assimilated. 

 

 

CH7 Figure 10: SM_L4 Algorithm Overview 

 

 

In Figure 10, an outline of one forecast and analysis cycle is presented. The algorithm 

starts with a Catchment model ensemble forecast, which is initialized with the analysis 

at time t-1 and valid at time t (labeled FCST(t) in Figure 4). For each 9 km model grid 

cell, the forecast freeze/thaw (F/T) state is first compared to the corresponding SMAP 

freeze/thaw observations, which are aggregated to the resolution of the model forecast.  
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If there is a discrepancy between the Catchment model forecast and the SMAP 

observations, the model's states in the grid cell in question are corrected towards the 

observations in a freeze/thaw analysis. If the forecast and observed freeze/thaw states 

agree and indicate non-frozen conditions, the grid cell in question is included in a 

distributed soil moisture analysis. 

 When the model indicates non-frozen conditions, but freeze/thaw observations are not 

available, the grid cell is also included in the soil moisture analysis. On the other hand, 

if the analysis step is not required for the grid cell in question, it is skipped. Once the 

analysis has been completed for all grid cells, the algorithm proceeds with a model 

forecast to time t+1, and so on. [10][11] 

 

3.3.3 Soil Moisture Analysis 

 

the L4_SM product is produced within 7 days of satellite data acquisition after the 3-

month In-Orbit Checkout period of the SMAP observatory. The product is delivered on 

a 9-km Equal-Area Scalable Earth Grid (EASE-Grid 2.0) and includes uncertainty 

estimates of the soil moisture estimates. Quality control flags are also included in the 

product to indicate the validity of the data in each grid cell. 

 

CH7 Figure 11: Soil Moisture Analysis 

 

This flowchart explains the process of analysis of soil moisture. 

a) The L4_SM product is derived using the Catchment model, which assimilates 

brightness temperature observations from the SMAP instrument to estimate soil 

moisture. The process starts with obtaining the brightness temperature 

observations from SMAP and downscales them to a 9-km grid cell resolution. 
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If downscaled data are unavailable, 36-km brightness temperature observations 

are used instead. The observed and modeled brightness temperatures are then 

adjusted by subtracting their respective seasonally varying, climatological mean 

values before computing the innovations vector. 

b) The data assimilation system weighs the relative errors of the assimilated SMAP 

brightness temperature observations and the corresponding land model forecast 

to dynamically determine error estimates of the assimilation product. Estimates 

of the error of the assimilation product are then provided for select variables as 

part of the Analysis Update Data File Collection.  

c) The state vector for the soil moisture analysis consists of seven Catchment 

model prognostic variables at each 9-km grid cell. The increments are computed 

in the units of the Catchment model prognostic variables using three-

dimensional updates, and at least 24 ensemble members will be used to reduce 

sampling errors. [10][11] 

 

             
 

 

3.4 SMAP L4 Data Access  
There are different ways for access SM_L4 

1. National Snow and Ice Data Center (NSIDC) DAAC: The NSIDC DAAC is the 

primary data archive and distribution center for SMAP data products. You can access 

and download SMAP L4 data products from the NSIDC DAAC website 

(https://nsidc.org/data/smap ). The website provides various tools and services for 

searching, browsing, and downloading SMAP data products. 

 

2. NASA Earthdata Search: The NASA Earthdata Search tool 

(https://search.earthdata.nasa.gov) is another way to access and download SMAP L4 

data products. The tool allows you to search and filter SMAP data products based on 

various parameters, such as date, location, and product type. You can download the 

data products directly from the search results or add them to a cart for bulk download. 

 

3. Application Programming Interfaces (APIs): You can also access SMAP L4 data 

products programmatically using APIs provided by the NSIDC DAAC or other third-

party services. For example, the NSIDC DAAC provides a RESTful API for accessing 

SMAP data products (https://nsidc.org/data/smap/data-access). You can use this API 

to automate data retrieval and processing tasks using scripting languages such as 

Python or R. 

 

https://nsidc.org/data/smap


 
Page | 148 

 

4. Command-line tools: The NSIDC DAAC also provides command-line tools for 

accessing and downloading SMAP data products, such as the NSIDC Data Access and 

Management System (NDAMS) and the Simple Subset Wizard (SSW) tool. These tools 

can be useful for automating data retrieval and processing tasks on remote servers or 

cloud computing environments.[12] 

 

 

3.5 DROUGHT MONITOR  
 

3.5.1 Drought Problem Definition  

A drought is a prolonged period of abnormally dry weather or precipitation deficiency, 

resulting in a water shortage that can adversely affect human activities, agriculture, and 

the environment. Droughts can be caused by various factors, including climate 

variability and change, natural weather patterns, and human activities such as overuse 

of water resources.[13][14] 

 

3.5.2 Impact of Drought  
 

1. Crop and pasture losses: Drought can reduce soil moisture, which can lead to 

reduced crop yields and pasture productivity. Plants may also become more vulnerable 

to pests and diseases during drought conditions. 

2. Livestock losses: Drought can lead to a shortage of forage and water for livestock, 

which can result in reduced weight gain, increased mortality, and decreased 

reproductive performance. 

3. Reduced water supplies: Drought can lead to decreased streamflow, reduced water 

levels in lakes and reservoirs, and decreased groundwater recharge, which can reduce 

water supplies for irrigation, industry, and domestic use. 

4. Wildfires: Drought can increase the risk of wildfires, which can have significant 

impacts on ecosystems and communities. 

5.Water quality: Drought can lead to reduced water quality, as low streamflow can 

concentrate pollutants and increase the risk of algal blooms. 

6.Economic impacts: Drought can have significant economic impacts, including 

reduced agricultural productivity, increased food prices, and reduced revenues for 

industries that rely on water, such as hydroelectric power and recreation. 

7.Social impacts: Drought can have significant social impacts, including increased 

food insecurity, reduced access to water for drinking and sanitation, and increased 

conflicts over water resources. 

Mitigating the impacts of drought requires a combination of water conservation 

measures, drought-resistant crops and livestock, and effective drought monitoring and 

management strategies. 
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By implementing these strategies, communities and water managers can help to reduce 

the impacts of drought and ensure that water resources are managed in a sustainable 

and resilient manner.[13][14] 

3.5.3 Drought Monitor Definition  
 

The Drought Monitor is a tool used in the United States to track and monitor drought 

conditions across the country. It is produced by a partnership of government agencies, 

including the National Oceanic and Atmospheric Administration (NOAA), the U.S. 

Department of Agriculture (USDA), and the National Drought Mitigation Center 

(NDMC) at the University of Nebraska-Lincoln. 

The Drought Monitor uses a combination of indicators, including precipitation, soil 

moisture, streamflow, and vegetation health, to assess the severity of drought conditions 

in different regions of the country. The data is collected and analyzed on a weekly basis, 

and the results are presented in a map that shows the extent and severity of drought 

conditions across the United States. The map is color-coded to indicate different stages 

of drought, ranging from abnormally dry to exceptional drought, with corresponding 

impacts on agriculture, water supplies, and other sectors. The Drought Monitor is used 

by policymakers, water managers, and the public to make informed decisions about 

water use, drought preparedness, and response to drought emergencies.[15] 

3.5.4 Category Scale of Drought Monitor 

The Drought Monitor uses a five-category scale to classify drought severity, each with 

corresponding impacts on agriculture, water resources, and other sectors. The 

categories, from least severe to most severe, are: 

 

1. Abnormally Dry (D0): This indicates that an area is experiencing dryness, but not 

yet at drought levels. The impacts are minimal, but there may be some concerns for 

agriculture and wildfire risk. 

2. Moderate Drought (D1): This indicates that an area is experiencing some degree of 

drought, with some damage to crops and pastures, and an increase in the risk of 

wildfires. 

3. Severe Drought (D2): This indicates that an area is experiencing significant drought 

conditions, with major damage to crops, pastures, and water supplies. Water restrictions 

may be necessary, and there is an increased risk of wildfires. 

4. Extreme Drought (D3): This indicates that an area is experiencing severe and 

widespread drought conditions, with major crop and pasture losses, widespread water 

shortages, and an increased risk of water conflicts and wildfires. 

5. Exceptional Drought (D4): This indicates that an area is experiencing exceptional 

and widespread drought conditions, with complete crop and pasture losses, water 

shortages in reservoirs, streams, and wells, and widespread water emergencies.  

This category indicates a water supply crisis, with impacts on agriculture, industry, and 

communities.[16][17] 

3.6 Worldwide satellite data-based Drought Monitor 
Our goal is to develop a global Drought Monitor that can aid in predicting drought 

indices and promptly identifying solutions.[16][17] 

It’s included:  
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• Daily update 

• Comparable Measurement worldwide 

• Comparable resolution worldwide 

• simplified demonstration of climate change effects 

 3.6.1 SM_L4 Data for Creating Drought Monitor  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creating a drought monitor from soil moisture data involves several steps. Here are the main 

steps: 

 

1. Obtain soil moisture data: You can obtain soil moisture data from various sources, such as 

satellite data, ground-based sensors, or model output. The data should cover the desired region 

and time period. 

 

2. Calculate the soil moisture anomalies: Calculate the deviation of the current soil moisture 

from the long-term average soil moisture in the region of interest. This can be done by 

subtracting the long-term average soil moisture from the current soil moisture data. 

 

3. Choose a drought index: Choose a drought index that is appropriate for the specific region 

and application. Some common drought indices include the Standardized Precipitation Index 

(SPI), the Palmer Drought Severity Index (PDSI), the Standardized Soil Moisture Index (SSI), 

and the Soil Moisture Anomaly (SMA). 

 

4. Apply the drought index to the soil moisture anomalies: Apply the chosen drought index to 

the soil moisture anomalies to create a drought monitor. The drought monitor will classify areas 

as being in normal, moderate, severe, or extreme drought based on the index values. 

 

5. Visualize the drought monitor: Visualize the drought monitor using maps, graphs, or other 

visualizations to make it easy to interpret the data. The visualization should highlight the areas 

that are experiencing drought and the severity of the drought. 

 

6. Validate the results: Validate the results of the drought monitor by comparing them to other 

meteorological and hydrological data, such as precipitation, streamflow, and vegetation health. 

This will help to ensure the accuracy and reliability of the drought monitor. 

 

7. Update the drought monitor: Update the drought monitor regularly to reflect changes in the 

soil moisture conditions and drought severity in the region. This will help to provide timely and 

makers and stakeholders.-ate information to decisionaccur 
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CH7 Figure 12 Drought Monitor Flowchart 

 

It's important to note that creating a drought monitor from soil moisture data requires 

expertise in both data analysis and drought monitoring. It's also important to consider 

other factors that can contribute to drought, such as temperature, precipitation, and 

vegetation health, when interpreting the results of a drought monitor.[18][19] 
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3.6.2 SM_L4 Soil Moisture Data Analysis [20][21] 
 

- First, using these tools to create request Algorithm for Sm_L4: 

1. python program language 

2. AWS Sage Maker tutorial cloud  

3. Anaconda software 

 

- Main arguments in algorithms: 

 
 

 

 

 

 

 

 

CH7 Table 4: SMAP Data argument 

  - Downloading Data with Binary Format HDF5 files then reading data we need from 

files  

    

 

 

 

 

 

 

 

 

 

 

CH7 Table 5: HDF5 Soil Moisture data 

 

 

1.Start date 

2.End date 

3.Bounding box 

4.Short name for data 

5.Version 

6.CMR_URL 

7.URS_URL 

Soil Moisture Data from HDF 5 

Analysis_Data 

EASE2_global_projection 

 

Forecast_Data 

 

Metadata 

Observations_Data 

Cell_column 

Cell_lat 

Cell_lon 

Cell_row 

x, y 
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3.6.3 Drought Monitor Algorithm 

We follow these general steps to create algorithm for Drought Monitor: 

 

1.Data Preprocessing: 

Import the necessary Python libraries, including NumPy, Pandas, xarray, and any 

specific libraries for working with the chosen data format (e.g., netCDF4). 

Read the SMAP L4 data files using the appropriate functions provided by the selected 

libraries. 

2. Calculation of Drought Indices: 

Choose a suitable drought index or indices for your drought monitor. Popular choices 

include the Standardized Precipitation Index (SPI), Standardized Precipitation 

Evapotranspiration Index (SPEI), or Soil Moisture Anomaly Index (SMAI). 

Calculate the selected drought index using the processed SMAP L4 soil moisture data. 

3.Threshold Determination: 

Define the thresholds that represent different drought severity levels based on your 

specific requirements and the chosen drought index. These thresholds can be based on 

established guidelines or customized for your study area and application. 

Categorize the calculated drought index values into drought severity levels based on 

the defined thresholds. 

4.Visualization: 

Utilize Python libraries like Matplotlib, Seaborn, or Plotly to create visual 

representations of the drought monitor. 

Generate maps, time series plots, or other visualizations that display the spatial and 

temporal variations of drought severity levels based on the SMAP data and calculated 

indices. 

5.Interpretation and Analysis: 

Analyze the drought monitor outputs to gain insights into the drought patterns, trends, 

and impacts in your study area. 

Conduct further statistical analysis or integrate additional data sources (e.g., 

precipitation, temperature) to enhance the understanding of drought dynamics and 

their potential implications.[21][22][23] 

 

3.6.3.1 Sequence to create Drought Monitor [17][24][25]  

1.Analysis soil Moisture data for April in years from 2015 to 2022 

2.Get SMAP Pixel 

3.Make 30 day moving average (to smoothen curve) 

4.Create max/min curve out of all year curves 

5.Calculate percentile values for SMI of each pixel 

6.Scale depending on percentile 

1.Analysis soil Moisture data for April in years from 2015 to 2022 

1. 4D-Matrix: 365 days x len(lat) x len(lon) x 5 

2. Use Astropy to save into a FITS-File 
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CH7 Figure 13 

For our Drought Monitor, we will consider `Nan` as the standard value for sea and 

oceans, and we will only focus on soil moisture values on land. 

Additionally, the time values in the HDF5 dataset are represented as Julian Dates. 

 

2.Get SMAP Pixel 

Create a function to get pixel according to longitude and latitude.  

1. x longitude 

2. y latitude  

3. t time 

 

 

CH7 Figure 14: SMAP pixel 
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CH7 Figure 15 

 

3.Make 30 day moving average (to smoothen curve) 

We need to calculate the moving average for soil moisture values to get drought indices. 

 Average value = 365 days for year x 30 days for month x 24 hours x 60 min x 60 sec 

 

surface_mov_avr[time_idx] = np. average(surface[time_start_idx:(time_end_idx+1)], 

axis=0) 

 

4.Create max/min curve out of all year curves 

By using the maximum and minimum values of moving average for soil moisture, we 

can calculate the corresponding maximum and minimum values of drought indices. 

Then save all max and min values in csv file  

5.Calculate percentile values for SMI of each pixel  

For  one month in all years we just calculate  min and the first quartile for the reference 

period from 2015 to 2022 
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6.Scale depending on percentile 

To determine the scaling factors, we will compare the soil moisture values with the first 

quart values. 

scale_factors = [0, 0.2, 0.6, 0.8,0.92] 

 

 

 

 

 

 

 

3.6.3.2 Plotting Drought Monitor  

Once we have obtained the soil moisture (SM) values, as well as the minimum, 

maximum, and quartile values, the next step is to compare these values with established 

drought scales. This allows us to assess the severity of drought conditions in a given 

region. 

After determining the drought severity, the final step is to create a drought monitor. 

This is typically done by plotting the drought scale on a graph, with longitude on the x-

axis and latitude on the y-axis. This visual representation allows us to easily identify 

areas that are experiencing drought conditions and to track changes in drought severity 

over time. 

 

1 Dry: SM < SMquart – 0 x (SMquart - SMmin) 

 

2 Moderate Drought: SM < SMquart – 0.2 x (SMquart - SMmin) 

 

3 Severe Drought: SM < SMquart – 0.6 x (SMquart - SMmin) 

 

4 Extreme Drought: SM < SMquart – 0.8 x (SMquart - SMmin) 

 

5 Exceptional Drought: SM < SMquart – 0.92 x (SMquart - SMmin) 

 

CH7 Table 6 Drought Scale 

CH7 Figure 16 
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4.Results  

4.1 Soil Moisture data analysis with SMAP  
We were able to analysis Geo tiff data of Soil Moisture on QGIS software to see values of soil 

moisture as color. 

 

 

CH7 Figure 17: SMAP data analysis on Qgis. 

     

     

CH7 Figure 18: SMAP data visualize. 
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CH7 Figure 19: SMAP analysis in 6-2023 

 

4.2 Soil Moisture data analysis with JAXA 

 

CH 7 Figure 20: JAXA soil moisture data analysis using Qgis. 
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CH7 Figure 21: JAXA soil moisture analysis using python. 

 

CH7 Figure 22 

4.3 Drought Monitor 
 

 
CH 7 Figure 23 Drought Monitoring in 2022 Germany 
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CH7 Figure 24 Worldwide drought Monitoring 

 

 

 
 

CH7 Figure 25 Vol. Soil Moisture values at a location in Germany, with drought percentile. 
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CH7 Figure 26: DROUGHT MONITOR WITH DROUGHT SCALE  

5. Conclusion 

 
The SMAP L4 soil moisture analysis provides valuable insights into soil moisture patterns, 

benefiting various scientific disciplines and practical applications. Analysis improves our 

understanding of soil moisture variability, which is vital for studying hydrological processes, 

assessing drought conditions, and managing water resources effectively. The analysis also 

enhances agricultural applications by providing accurate soil moisture information, improving 

crop yields, and water efficiency. Incorporating SMAP L4 soil moisture data into weather and 

climate models helps enhance the accuracy of forecasts, especially in areas prone to droughts, 

floods, and extreme weather events. The analysis contributes to monitoring vegetation growth, 

assessing soil moisture impacts on ecosystems, and studying interactions between land surface 

processes and climate change. SMAP L4 soil moisture analysis serves as a reference dataset for 

validating and calibrating other satellite missions and remote sensing products, ensuring data 

consistency and accuracy across different platforms, and improving the overall quality of soil 

moisture observations. Overall, SMAP L4 soil moisture analysis plays a crucial role in 

improving our understanding of the Earth's water cycle, supporting sustainable water resource 

management, agriculture, weather prediction, and climate studies. The creation of a drought 

monitor from SMAP data can be a valuable tool for assessing and managing drought conditions. 

SMAP provides high-resolution, global soil moisture data that is crucial for monitoring drought. 

Through analyzing this data, scientists and policymakers can obtain accurate and up-to-date 

information about soil moisture conditions, enabling them to identify regions experiencing 

drought, assess the severity and extent of drought conditions, and make informed decisions 

regarding water resource management and agricultural practices.  Creating a drought monitor 

involves processing and analyzing satellite imagery and integrating it with other relevant data 

sources to allow for a more comprehensive understanding of drought conditions. The monitor 

can be developed using various techniques, including statistical models, machine learning 

algorithms, and remote sensing techniques, to classify different drought categories based on 

soil moisture data and associated variables.  Implementing a drought monitor can improve early 

warning systems, aid in drought forecasting and prediction, and assist farmers, water managers, 

and policymakers in making informed decisions related to irrigation planning, water allocation, 

and drought response strategies. Overall, leveraging SMAP data for drought monitoring can 

enhance our ability to assess, understand, and respond to drought conditions, contributing to 

better drought management and water resource planning. 
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8.OIL STORAGE DETECTION 

 

Abstract 

This thesis project aims to develop a remote sensing solution that utilizes innovative 

machine learning and AI algorithms to process, analyze, and interpret satellite data. The 

primary objective is to create a highly efficient AI model capable of detecting and 

classifying specific features, including trees, buildings, streets, farms, and oil fields. 

The research will utilize high-resolution training datasets from Google Earth, which 

have been labeled to indicate the location of bounding boxes around each oil storage. 

The project will focus on oil storage detection, given its critical role in infrastructure 

management, impacting multiple sectors, such as industry and energy. The AI model 

will be trained to estimate the location and size of oil storage, which will help improve 

their management, prevent any potential risks, and enhance monitoring capabilities. 

The project will utilize the state-of-the-art YoloV5 algorithm, in conjunction with tools 

and workflows on AWS, to train, validate, and assess the DL model for object detection. 

In this thesis, we utilized the Segment Anything Model (SAM) to convert object 

detection results into instance segmentation results, with the aim of improving the 

accuracy and quality of the segmentation outputs. The proposed solution has significant 

potential to enhance infrastructure management, particularly in monitoring oil tanks, 

thereby contributing to the overall efficiency and safety of the infrastructure. The 

research will involve developing and testing various models using different parameters 

and optimization techniques to ensure high accuracy and reliability. The project will 

also evaluate the feasibility of the proposed solution by comparing it to other existing 

approaches and solutions. Furthermore, the research will explore the potential 

applications of the developed model in other fields, such as agriculture, urban planning, 

and environmental monitoring. The project will also discuss the ethical and social 

implications of using AI in remote sensing and infrastructure management. This thesis 

project seeks to develop a novel and innovative solution for remote sensing and 

infrastructure management, leveraging state-of-the-art machine learning and AI 

techniques to improve efficiency and safety while contributing to sustainable 

development.  

1- Introduction  

Oil storage is a critical component of the energy industry and plays a vital role in the 

global economy. Effective management of oil tanks is essential for ensuring a reliable 

supply of oil and mitigating potential risks, such as spills, which can harm the 

environment and disrupt the economy. Therefore, accurate and efficient detection, 

classification, and monitoring of oil storage are crucial for infrastructure management. 

Traditional remote sensing methods for oil tank detection require manual interpretation 

and analysis of satellite imagery, which can be time-consuming and prone to errors. To 

address these challenges, machine learning and artificial intelligence (AI) algorithms 

have been employed to automate the process of oil tank detection and classification. 

This thesis aims to prototype a remote sensing solution that leverages machine learning 

and AI algorithms to process, analyze, and interpret satellite data for infrastructure 

management, with a focus on oil storage detection. The project will train an AI model 

to detect and classify specific features, such as oil fields, using labeled training datasets 
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obtained from Google Earth. The proposed solution will utilize the state-of-the-art 

YoloV5 library, along with tools and workflows on AWS, to train, validate, and assess 

the DL model for object detection, with a focus on oil tank monitoring and reducing 

potential risks, and using Segment Anything Model (SAM) for converting object 

detection results into instance segmentation results. The research will involve 

developing and testing various models using different parameters and optimization 

techniques to ensure high accuracy and reliability. The thesis project aims to develop a 

highly accurate and efficient AI model that can enhance infrastructure management, 

particularly in the monitoring of oil tanks, thus mitigating potential risks, such as spills. 

The research will evaluate the feasibility of the proposed solution by comparing it to 

other existing approaches and solutions. Furthermore, the research will explore the 

potential applications of the developed model in other fields, such as agriculture, urban 

planning, and environmental monitoring. The project aims to develop an innovative 

solution for remote sensing and infrastructure management, leveraging innovative 

machine learning and AI techniques to improve efficiency and safety while contributing 

to sustainable development. The research will focus on oil storage detection as a critical 

use case and will utilize labeled training datasets sourced from Google Earth. 

2- Literature Review  

Kasper-Eulaers et al. (2021) [37,38] studied how YOLOv5 can be implemented to 

detect heavy goods vehicles at rest areas during winter to allow for the real-time 

prediction of parking spot occupancy. The model was trained using Google 

Colaboratory (Colab), which provides free access to powerful GPUs and requires no 

configuration. A notebook was developed by Roboflow.ai which is based on YOLOv5 

and uses pre-trained COCO weight. The model improved swiftly in terms of precision, 

recall, and mean average precision before overfitting after about 150 epochs. The box, 

objectness and classification losses of the validation data also showed a rapid decline 

until around epoch 15. Results show that the trained algorithm can detect the front cabin 

of heavy goods vehicles with high confidence, while detecting the rear seems more 

difficult, especially when located far away from the camera. Malta et al. (2021) [37,39] 

proposed a model of a task assistant based on a deep learning neural network. A 

YOLOv5 network was used for recognizing some of the constituent parts of an 

automobile. The dataset created consisted of 582 images taken from three videos with 

similar lighting conditions, where it was possible to identify a total of eight different 

types of parts: oil dipstick; battery; engine oil reservoir; wiper water tank; air filter; 

brakes fluid reservoir; coolant reservoir; and power steering reservoir. The images 

taken from each frame were converted to a (416 × 416) format, which is the format that 

the chosen architecture needs to use as input. The hardware used during development 

included computers, for running software, and cell phones, for capturing videos and 

pictures. The object detection model was trained using laptop computer with access to 

a Google Colab virtual machine. The precision obtained for the two models (YOLOv5s 

and YOLOv5m) was in line with that obtained by other authors for similar problems. 

YOLOv5s demonstrated to be capable of identifying eight different mechanical parts 

in a car engine with high precision and recall always above 96.8% in the test sets, which, 

compared to the larger model, has almost the same results. Results proved that the 

network is good and fast enough to be applied to the task of assisting in recognizing 

constituent parts of an automobile. 

file:///G:/decumenation/frineds%20decume/final/CH_5_Oil%20Storage%20Detection%20Thesis.docx%23R_37
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Wan et al. (2021) [37, 40] proposed a YOLOv5 model based on a self-attention 

mechanism for polyp target detection. Mosaic method was used in the data 

preprocessing stage to enhance the amount of training data in the dataset, Cross Stage 

Partial Networks (CSPNet) were used as the backbone network to extract the 

information features in the image, which solved the problem of gradient disappearance, 

and the feature pyramid architecture with attention mechanisms was used to enhance 

the detection performance of varying-size polyps. The proposed method was trained by 

stochastic gradient descent (SGD) and backpropagation in an end-to-end way on a 

cloud-computing platform configured with eight 16 GB GPUs, a 16-core CPU, and a 

64 GB memory. YOLOv5 used spatial pyramid pooling (SPP) to enhance the model’s 

detection of objects with different scales, Path aggregation network (PANET) as the 

neck for feature aggregation and new Feature Pyramid Networks (FPN) structure that 

enhanced the bottom-up path, which improved the propagation of low-level features. 

The author’s method achieved excellent performance. In the Kvasir-SEG data set, the 

precision was 0.915, the recall rate was 0.899 and the Fscore was 0.907. In the WCY 

data set, the precision was 0.913, the recall was 0.921 and the F-score was 0.917. 

Specifically, this method used full-image information when predicting the target 

window using each network, which greatly reduced the false positive rate. 

Yao et al. (2021) [37, 41] developed a defect detection model based on YOLOv5, which 

can detect defects accurately, and at a fast speed. A small object detection layer was 

added to improve the model’s ability to detect small defects. Squeeze-and-Excitation 

(SE) Layer and the loss function complete intersection over union (CIoU) were 

introduced to make the regression more accurate. The model was trained based on 

transfer learning and used the Cosine Annealing algorithm to improve the effect. The 

mAP@0.5 of YOLOv5 reached 94.7%, which was an improvement of nearly 9%, 

compared to the original algorithm. 

The paper [5], based on the YOLO v5 object detection algorithm, a power plant oil 

reservoir oil leakage detection algorithm based on the CBAM-YOLO v5 model is 

proposed, and CBAM is introduced [35]. The attention mechanism makes the model 

focus more on the extraction of pipeline leakage features, weakens the influence of the 

complex background of the power plant on the detection results, uses Adaptively 

Spatial Feature Fusion to stitch the features of different levels after convolution, and 

suppresses inconsistencies by learning the contradictory information of spatial filters, 

improves the scale invariance of features and reduces the computational overhead in 

the reasoning process. Based on meeting the requirements of real-time detection, the 

algorithm proposed in the paper [5] can accurately locate the location of the oil leakage, 

and has a good accuracy, realizing the automatic detection and early warning of the on-

site oil leakage. In summary, this paper improves based on the single-stage target 

algorithm YOLOv5s that considers the recognition speed and detection accuracy, and 

the YOLO v5s model is more lightweight, and the number of parameters of the YOLO 

v5s model selected in this paper is only 7.2M. The input image size selection is more 

flexible, YOLO v5 can adaptively scale the input image to a unified standard size, to 

adapt to the complex environmental factors of the power plant oil depot, by integrating 

the CBAM attention mechanism, reassign the appropriate weight coefficient to the 

features of different resolutions, enhance the useful features in the image, suppress 

useless features, and make the model pay corresponding attention to the areas where oil 

leakage may be in the image The general splicing operation is replaced by Adaptively 

Spatial Feature Fusion, and the features of different levels are adaptively fused to better 
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retain the useful information in the features. The main contributions of this research 

are: 

• An oil leakage detection algorithm based on the improved YOLO v5 is proposed 

for power plant oil depot pipelines. By integrating the CBAM attention 

mechanism and Adaptively Spatial Feature Fusion, the model focuses more on 

extracting oil leakage features and improves the scale invariance of features. 

• A self-built oil leakage dataset from power plant pipelines is constructed. 

Experiments show that the proposed algorithm has higher accuracy and a lower 

false detection rate than the original YOLO v5 algorithm.  

The proposed algorithm shows strong generalization performance in the complex 

environment of power plants. It can detect oil leakage at different distances and angles 

accurately. This paper is directly relevant to this thesis as it also explores using the 

YOLOv5 framework for object detection. 

The paper [36], the single-stage target detection algorithm based on deep learning is 

combined with the UAV patrol line of natural gas pipelines, and an algorithm model 

based on improved YOLOv5 is proposed. The Recurrent Criss-Cross Attention module 

is added to the backbone network to improve the feature extraction capability. The 

feature fusion module uses the TridentNet network to improve the performance of the 

multi-scale feature fusion of the model. WBF post-processing is used to replace the 

original NMS, improving the prediction algorithm's regression accuracy. Experiments 

show that the improvement has effectively improved the detection effect of third-party 

intrusion of natural gas pipelines. In the third-party intrusion detection task of natural 

gas pipelines, fusing features of different scales is an important means to improve the 

performance. The low-level features have higher resolution and often contain more 

construction site location and detailed information, but due to fewer convolutions, they 

have lower semantics and more noise. High-level features have stronger semantic 

information, but low resolution and poor perception of details. YOLOv5 adopts the 

structure of FPN+PAN to realize feature extraction. The network draws on the pyramid 

structure to combine resolution information and semantic information to overcome the 

problems caused by different layers and different scales. But there is still room for 

improvement in accuracy. This paper uses Trident Block for feature fusion. This 

module combines the image pyramid and feature pyramid at the same time and uses the 

parameter sharing method to propose three branches for training, but only one branch 

is used for testing, to ensure that there will be no additional parameters and calculations 

during forward reasoning volume increase. In summary, these two papers present 

complementary applications of deep learning for oil spill monitoring through image 

classification and localization. The proposed work in this thesis can build upon these 

papers by adapting YOLOv5 for a comprehensive solution to detect oil storage tanks. 

3- Methodology 

This thesis is divided into two parts, Part one: Object Detection and Part two: 

Transformation from object detection to instance segmentation using SAM. 

Methodology for part one: 

3.1 Yolov5 Architecture [5] 
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The YOLOv5 Algorithm is a state-of-the-art object detection algorithm that has gained 

significant attention in the computer vision community due to its high detection 

accuracy and fast inference speed. This algorithm is a one-stage object detection 

algorithm that directly predicts the location and category of an object after extracting 

its features. It has been shown to outperform other popular algorithms such as Faster 

R-CNN and Mask R-CNN in terms of detection speed and accuracy. The YOLOv5 

Algorithm is an improvement over its predecessors YOLOv4, YOLOv3, and YOLOv2. 

In YOLOv4, the backbone network was modified to CSPDarknet53, the activation 

function was replaced with Mish, and a PANet structure based on the FPN from 

YOLOv3 was added. YOLOv5 has further improved based on YOLOv4, with faster 

detection speed and reduced model size, making it more suitable for real-world 

applications. The YOLOv5 algorithm has four models: YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. These models differ in depth and width, with increasing 

feature extraction ability. In this project, the largest YOLOv5x network was selected as 

the research object as it is intended to be deployed on Websites. The algorithm was 

further improved based on the specific needs of the study, and a model for the detection 

of oil storage tanks, floating head tanks, and tank clusters was established. 

The YOLOv5 Algorithm is composed of three parts: backbone, neck, and head. The 

backbone consists of a series of convolutional neural networks (CNNs) used to extract 

image features. The backbone includes focus, C3, and SPP modules. The focus module 

slices the images and splices them into the channel dimension to integrate the width 

and height information into the channel dimension, which can effectively improve the 

speed of feature extraction. The C3 module is improved from the structure of the cross-

stage partial (CSP) connections, having one less convolution layer and changing the 

activation function, and its main function is to extract features from images and reduce 

the repetition of gradient information. The spatial pyramid pooling (SPP) module 

respectively uses three pooling kernels of sizes 5, 9, and 13 to perform max-pooling 

operations on the images. This module can increase the receptive field of the network 

and obtain features of different scales. The neck is the feature fusion network of the 

model, where feature pyramid networks (FPNs) and path aggregation network (PANet) 

are adopted. The structure of the FPNs transmits semantic information from the top 

down, while the PANet additionally transmits location information from the bottom up 

based on the FPNs. The head is the prediction network of the model and, through 

convolution operations, three groups of feature vectors containing the categories 

prediction boxes, confidence, and coordinate position are output, which predicts at 

scales of (80 × 80), (40 × 40), and (20 × 20), respectively. 
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CH 8 Figure1 YOLOv5 Architecture 

3.2 The key features of the YOLO v5 object detection algorithm [5]: 

3.2.1) Mosaic data enhancement 

At the input end of YOLO v5, mosaic data enhancement operation is used, which 

divides the input pictures into four groups, and stitches the four pictures in each group 

according to the way of scaling, then cropping and random arrangement, and finally 

obtains a new picture and passes it into the neural network to learn, which greatly 

enriches the background of detecting objects, reduces the algorithm's dependence on 

the match size and improves the training speed and network accuracy of the model. 

3.2.2) Adaptive anchor frame calculation 

In the YOLO series of algorithms, for different data sets, it is necessary to set a specific 

length and width anchor point frame, and the setting of the initial anchor point frame is 

also a key part of the initial stage of network training. In YOLO v5, the algorithm can 

adaptively calculate the optimal anchor box based on the name of the dataset at each 

training. 

3.2.3) Adaptive image zoom 

In the object detection algorithm, the length and width of different images are different, 

so the more common way is to uniformly scale the original image to a standard size and 

then feed it into the detection network. There are many problems with the traditional 

scaling method, if too much padding after scaling, there will be a lot of information 

redundancy, which will affect the inference speed of the entire algorithm. Therefore, 

the YOLO v5 algorithm proposes an adaptive scaling method with the least black edges, 

first calculating the scale according to the size of the original picture and the size of the 
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picture entered the network, then calculating the size of the scaled picture according to 

the original picture size and scale, and finally calculating the black edge fill value for 

filling. This adaptive image scaling can improve the inference speed of the algorithm. 

3.2.4) Focus operation 

In the backbone segment, the YOLO v5 algorithm uses the Focus operation to slice the 

picture, obtains a value for every other pixel in a picture (similar to proximity 

downsampling), and finally obtains four similar images, and then the obtained new 

image is convoluted to obtain a feature map that is doubled and subsampled, and there 

is no information loss, the height and width information is concentrated in the channel 

space during the whole slicing process, and the input channel is expanded by 4 times. 

That is, the input channel has changed from the original R, G, B three channels to 12 

channels. 

3.2.5) Cross Stage Partial Network (CSP network) 

The CSP network splits the input features into two parts, one part is convoluted, and 

the other part is merged with the results of the previous convolution operation (Concat), 

which solves the gradient information duplication problem of network optimization in 

the large convolutional neural network architecture, integrates the gradient change into 

the feature graph, and takes into account the model inference speed and accuracy while 

reducing the size of the model by reusing the feature map. 

3.2.6) Path-Aggregation Network (PANet)  

PANet is used to aggregate features, and the feature extractor of the network uses a new 

FPN structure that enhances the bottom-up path to improve the propagation of low-

level features so that the low-level positioning information can also be enhanced to the 

entire feature extraction network. By adjusting the depth multiple and width multiple 

parameters, YOLO v5 implements YOLO v5s, YOLO v5m, YOLO v5 l, and YOLO 

v5x four structures, these four structures networks gradually deepened and widened, 

generalization ability, feature extraction ability, feature fusion ability, and AP accuracy 

continue to improve, but with the follow-up is that the model training speed will slow 

down with the increase or decrease of model complexity. YOLOv5 model achieves 

high accuracy and speed through a combination of different components, including the 

activation function, optimization function, cost function or loss function, Weights, 

biases, parameters, gradients, and final model summary. This thesis analyzes each 

component and its significance in the YOLOv5 model. The thesis also evaluates the 

impact of different components on the performance of the YOLOv5 model through 

experimentation and analysis. 

3.3 Activation Function [42] 

The activation function is a critical component of neural networks used in the YOLOv5 

model. The activation function determines whether a neuron should be activated or not. 

The YOLOv5 model uses different activation functions, including ReLU, LeakyReLU, 

and Sigmoid. The ReLU activation function is the most widely used activation function 

in the YOLOv5 model due to its simplicity and speed. However, the LeakyReLU 

activation function performs better in detecting objects with low contrast, while the 

Sigmoid activation function is useful in detecting objects with non-linear boundaries. 
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3.4 Optimization Function [42] 

The optimization function is another essential component of neural networks used in 

the YOLOv5 model. The optimization function is responsible for minimizing the error 

between the predicted output and the actual output. The YOLOv5 model uses different 

optimization functions, including Adam and SGD. The Adam optimization function is 

the most widely used optimization function in the YOLOv5 model due to its ability to 

adapt to different learning rates. However, the SGD optimization function performs 

better in detecting objects with complex boundaries. 

3.5 Cost Function or Loss Function [42] 

The cost function or loss function is a critical component of neural networks used in 

the YOLOv5 model. The cost function or loss function measures the error between the 

predicted output and the actual output. The YOLOv5 model uses different cost 

functions, including Mean Squared Error (MSE) and Binary Cross-Entropy (BCE). The 

MSE cost function is the most widely used cost function in the YOLOv5 model due to 

its simplicity. However, the BCE cost function performs better in detecting objects with 

complex boundaries. 

3.6 Weights, Biases, Parameters, Gradients, and Final Model Summary [42] 

weights, biases, parameters, and gradients are essential components of neural networks 

used in the YOLOv5 model. These components are responsible for adjusting the 

model's output to match the actual output. The final model summary provides an 

overview of the YOLOv5 model's architecture. The YOLOv5 model uses different 

Weights, biases, parameters, and gradients to adjust the model's output. The final model 

summary provides an overview of the YOLOv5 model's architecture, including the 

number of layers, filters, and parameters. 

3.7 Results of Output [42] 

The YOLOv5 model achieves high accuracy and speed in detecting objects in real-time. 

It outperforms other object detection models, including YOLOv4 and Faster R-CNN, 

in terms of accuracy and speed. The results demonstrate the importance of each 

component in achieving high accuracy and speed in object detection. The performance 

of the model is evaluated using metrics such as precision, recall, F1 score, and mean 

average precision (mAP). 

3.7.1 Precision measures the proportion of true positive detections among all the 

objects detected.  

3.7.2 Recall measures the proportion of true positive detections among all the objects 

that should have been detected.  

3.7.3 F1 score is the harmonic means of precision and recall and provides a balanced 

measure of the model's performance.  

3.7.4 Mean average precision (mAP) is a commonly used metric in object detection 

tasks that measures the average precision across different recall levels. It is computed 

by taking the area under the precision-recall curve. In the experiments conducted for 

this thesis, the YOLOv5 model achieved high precision, recall, F1 score, and mAP 
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across different datasets and object classes. The model's performance was consistently 

high across different activation functions, optimization functions, and cost functions. 

However, it was observed that the performance of the model was affected by the size 

and complexity of the objects being detected. Objects with small sizes or complex 

boundaries were more challenging to detect, leading to lower precision and recall. 

Overall, the results demonstrate that the YOLOv5 model is a highly effective object 

detection algorithm that achieves high accuracy and speed in real-time. The model's 

performance can be further improved by optimizing the detection of small objects and 

complex boundaries. 

3.8 Architecture of YOLOv5x [43] 

Among the four models in the YOLOv5 family, the YOLOv5x model is the most 

advanced and powerful model, which has been designed to provide high accuracy 

object detection in complex scenes. The YOLOv5x model is equipped with a 

CSPDarknet53 backbone network, which is an improved version of the CSPDarknet 

network used in YOLOv4. The CSPDarknet53 network has a hybrid residual and dense 

connection structure that reduces the number of parameters while improving the feature 

extraction ability. This network architecture enables the YOLOv5x model to extract 

more detailed features from the input images. 

The YOLOv5x model employs advanced feature extraction techniques, including 

focus, C3, and SPP modules. The focus module slices the images and splices them into 

the channel dimension, effectively enhancing the speed of feature extraction. The C3 

module uses the structure of cross-stage partial (CSP) connections to extract features 

from the images and reduce the repetition of gradient information. The spatial pyramid 

pooling (SPP) module uses three pooling kernels of size 5, 9, and 13 to perform max-

pooling operations on the images, which can increase the receptive field of the network 

and obtain features of different scales. The neck of the YOLOv5x model uses feature 

fusion techniques to combine features from different scales and levels. The model uses 

PANet, which is an extension of the feature pyramid network (FPN) used in other 

YOLOv5 models. PANet adds a bottom-up path to the FPN, enabling it to combine 

features from different spatial resolutions and improve the localization accuracy of 

small objects. The head of the YOLOv5x model uses a modified YOLOv4 head with 

more convolutional layers and filters. The model predicts objects at three different 

scales: 320x320, 640x640, and 1280x1280. The model also uses anchor boxes with 

different aspect ratios and scales to improve the detection accuracy of objects with 

different shapes and sizes. Despite having many parameters, with a total of 176 million, 

the YOLOv5x model can still achieve real-time detection on a single GPU, thanks to 

its efficient implementation and parallel processing capabilities. The model's high 

accuracy and real-time performance make it suitable for applications such as 

autonomous driving and video surveillance. In conclusion, the YOLOv5x model is a 

powerful object detection algorithm that offers high detection accuracy and fast 

inference speed in complex scenes. Its advanced feature extraction and fusion 

techniques, including the CSPDarknet53 backbone network, focus, C3, SPP modules, 

and PANet neck, make it a state-of-the-art model for object detection. Its ability to 

achieve real-time performance on a single GPU, despite having many parameters, 
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makes it suitable for a wide range of applications, including autonomous driving, video 

surveillance, and robotics. 

CH 8 Figure 2 YOLOv5x Architecture 

Methodology for Part Two: Oil Storage Segmentation Using SAM 

3.9 SAM Architecture [8] 

Meta AI aimed to build a foundation model for segmentation by introducing three 

interconnected components: a promptable segmentation task, a segmentation model 

(SAM) that powers data annotation and enables zero-shot transfer to a range of tasks 

via prompt engineering, and a data engine for collecting SA-1B, the dataset of over 1 

billion masks as illustrated in figure (3). 

 

                    CH 8 Figure3 Interconnected Components for Segmentation 

3.9.1 Segment Anything Task 

prediction task is used for foundation model pre-training and to solve diverse 

downstream tasks via prompt engineering [9]. To build a foundation model for 

segmentation, Meta AI aimed to define a task with analogous capabilities. 

Task. They started by translating the idea of a prompt from NLP to segmentation, 

where a prompt can be a set of foreground/background points, a rough box or mask, 
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free-form text, or, in general, any information indicating what to segment in an image. 

The promotable segmentation task, then, is to return a valid segmentation mask given 

any prompt. The requirement of a “valid” mask simply means that even when a prompt 

is ambiguous and could refer to multiple objects (e.g., recall the shirt vs. person 

example, and see Fig. [4]), the output should be a reasonable mask for at least one of 

those objects. This requirement is similar to expecting a language model to output a 

coherent response to an ambiguous prompt. This task was chosen because it leads to a 

natural pre-training algorithm and a general method for zero-shot transfer to 

downstream segmentation tasks via prompting. 

Pre-training. The promptable segmentation task suggests a natural pre-training 

algorithm that simulates a sequence of prompts (e.g., points, boxes, masks) for each 

training sample and compares the model’s mask predictions against the ground truth. 

They adapted this method from interactive segmentation [11, 10], although unlike 

interactive segmentation whose aim is to eventually predict a valid mask after enough 

user input, the aim is to always predict a valid mask for any prompt even when the 

prompt is ambiguous. This ensures that a pre-trained model is effective in use cases that 

involve ambiguity, including automatic annotation. 

Zero-shot transfer. Intuitively, the pre-training task endows the model with the ability 

to respond appropriately to any prompt at inference time, and thus downstream tasks 

can be solved by engineering appropriate prompts. For example, if one has a bounding 

box detector for cats, cat instance segmentation can be solved by providing the 

detector’s box output as a prompt to the model. In general, a wide array of practical 

segmentation tasks can be cast as prompting. 

 

CH 8 Figure 4: Each column shows 3 valid masks generated by SAM from a single 

ambiguous point prompt (green circle). 

3.9.2. Segment Anything Model 

The Segment Anything Model (SAM) is described for promptable segmentation. SAM 

has three components, illustrated in Fig. 5: an image encoder, a flexible prompt encoder, 

and a fast mask decoder. We build on Transformer vision models [12, 13, 14, 15] with 

specific tradeoffs for (amortized) real-time performance. 
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Image encoder. Motivated by scalability and powerful pretraining methods, Meta 

Researchers use an MAE [16] pre-trained Vision Transformer (ViT) [14] minimally 

adapted to process high resolution inputs [15]. The image encoder runs once per image 

and can be applied prior to prompting the model. 

Prompt encoder. They consider two sets of prompts: sparse (points, boxes, text) and 

dense (masks). They represent points and boxes by positional encodings [17] summed 

with learned embeddings for each prompt type and free-form text with an off-the-shelf 

text encoder from CLIP [18]. Dense prompts (i.e., masks) are embedded using 

convolutions and summed elementwise with the image embedding. 

Mask decoder. The mask decoder efficiently maps the image embedding, prompt 

embeddings, and an output token to a mask. This design, inspired by [12, 13], employs 

a modification of a Transformer decoder block [19] followed by a dynamic mask 

prediction head. The modified decoder block uses prompt self-attention and cross-

attention in two directions (prompt-to-image embedding and vice-versa) to update all 

embeddings. After running two blocks, Meta AI Researchers upsample the image 

embedding and an MLP maps the output token to a dynamic linear classifier, which 

then computes the mask foreground probability at each image location. 

Resolving ambiguity. With one output, the model will average multiple valid masks if 

given an ambiguous prompt. To address this, Meta Researchers modify the model to 

predict multiple output masks for a single prompt (see Fig. 3). Meta AI Researchers 

found 3 mask outputs are sufficient to address most common cases (nested masks are 

often at most three deep: whole, part, and subpart). During training, Meta AI 

Researchers backprop only the minimum loss [20, 21, 22] over masks. To rank masks, 

the model predicts a confidence score (i.e., estimated IoU) for each mask. 

Efficiency. The overall model design is largely motivated by efficiency. Given a 

precomputed image embedding, the prompt encoder and mask decoder runs in a web 

browser, on CPU, in ∼50ms. This runtime performance enables seamless, real-time 

interactive prompting of the model. 

Losses and training. Meta AI Researchers supervise mask prediction with the linear 

combination of focal loss [23] and dice loss [24] used in [12]. Meta Researchers train 

for the promptable segmentation task using a mixture of geometric prompts. Following 

[25, 26], Meta Researchers simulate an interactive setup by randomly sampling prompts 

in 11 rounds per mask, allowing SAM to integrate seamlessly into the data engine. 

 

CH 8 Figure 5: Segment Anything Model (SAM) overview. A heavyweight image encoder 

outputs an image embedding that can then be efficiently queried by a variety of input prompts 

to produce object masks at amortized real-time speed. For ambiguous prompts corresponding 

to more than one object, SAM can output multiple valid masks and associated confidence 

scores. 
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3.9.3. Segment Anything Data Engine 

As segmentation masks are not abundant on the internet, Meta AI Researchers built a 

data engine to enable the collection of the 1.1B mask dataset, SA-1B. The data engine 

has three stages: (1) a model-assisted manual annotation stage, (2) a semi-automatic 

stage with a mix of automatically predicted masks and model-assisted annotation, and 

(3) a fully automatic stage in which the model generates masks without annotator input.  

Assisted-manual stage. In the first stage, resembling classic interactive segmentation, 

a team of professional annotators labeled masks by clicking foreground/background 

object points using a browser-based interactive segmentation tool powered by SAM. 

Masks could be refined using pixel-precise “brush” and “eraser” tools. The model-

assisted annotation runs in real-time directly inside a browser (using precomputed 

image embeddings) enabling a truly interactive experience. Meta AI Researchers did 

not impose semantic constraints for labeling objects, and annotators freely labeled both 

“stuff” and “things” [27]. Meta AI Researchers suggested annotators label objects they 

could name or describe but did not collect these names or descriptions. Annotators were 

asked to label objects in order of prominence and were encouraged to proceed to the 

next image once a mask took over 30 seconds to annotate. 5 At the start of this stage, 

SAM was trained using common public segmentation datasets. After sufficient data 

annotation, SAM was retrained using only newly annotated masks. As more masks 

were collected, the image encoder was scaled from ViT-B to ViT-H, and other 

architectural details evolved; in total Meta Researchers retrained the model 6 times. The 

average annotation time per mask decreased from (34 to 14) seconds as the model 

improved. Meta AI Researchers note that 14 seconds is (6.5× faster) than mask 

annotation for COCO [28] and only( 2× slower) than bounding-box labeling with 

extreme points [29, 30]. As SAM improved, the average number of masks per image 

increased from 20 to 44 masks. Overall, Meta AI Researchers collected 4.3M masks 

from 120k images in this stage. 

Semi-automatic stage. In this stage, Meta AI Researchers aimed to increase the 

diversity of masks in order to improve the model’s ability to segment anything. To 

focus annotators on less prominent objects, Meta AI Researchers first automatically 

detected confident masks. Then Meta AI Researchers presented annotators with images 

prefilled with these masks and asked them to annotate any additional unannotated 

objects. To detect confident masks, Meta Researchers trained a bounding box detector 

[31] on all first stage masks using a generic “object” category. During this stage, they 

collected an additional 5.9M masks in 180k images (for a total of 10.2M masks). As in 

the first stage, they periodically retrained the model on newly collected data (5 times). 

Average annotation time per mask back up to 34 seconds (excluding the automatic 

masks) as these objects are more challenging to label. The average number of masks 

per image went from 44 to 72 masks (including the automatic masks). 

Fully automatic stage. In the final stage, annotation was fully automatic. This was 

feasible due to two major enhancements to the model. First, at the start of this stage, 

Meta AI Researchers had collected enough masks to greatly improve the model, 

including the diverse masks from the previous stage. Second, by this stage, they had 

developed the ambiguity-aware model, which allowed them to predict valid masks even 

in ambiguous cases. Specifically, Meta AI Researchers prompted the model with a 

(32×32) regular grid of points and for each point predicted a set of masks that may 

correspond to valid objects. With the ambiguity-aware model, if a point lies on a part 
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or subpart, the model will return the subpart, part, and whole object. The IoU prediction 

module of the model is used to select confident masks; moreover, Meta AI Researchers 

identified and selected only stable masks (they consider a mask stable if thresholding 

the probability map at 0:5 − δ and 0:5 + δ results in similar masks). Finally, after 

selecting the confident and stable masks, they applied non-maximal suppression (NMS) 

to filter duplicates. To further improve the quality of smaller masks, they also processed 

multiple overlapping zoomed-in image crops. Meta AI Researchers applied fully 

automatic mask generation to all 11M images in the dataset, producing a total of 1.1B 

high-quality masks. 

   

                CH 8 Figure 6: Image-size normalized mask center distributions. 

3.9.3. Segment Anything Dataset 

The dataset, SA-1B, consists of 11M diverse, high resolution, licensed, and privacy 

protecting images and 1.1B high-quality segmentation masks collected with the data 

engine. They compare SA-1B with existing datasets and analyze mask quality and 

properties. They are releasing SA-1B to aid the future development of foundation 

models for computer vision. They also note that SA-1B will be released under a 

favorable license agreement for certain research uses and with protections for 

researchers. 

Images. They licensed a new set of 11M images from a provider that works directly 

with photographers. These images are high resolution (3300×4950 pixels on average), 

and the resulting data size can present accessibility and storage challenges. Therefore, 

they are releasing down-sampled images with their shortest side set to 1500 pixels. 

Even after down sampling, the images are significantly higher resolution than many 

existing vision datasets (e.g., COCO [28] images are ∼480×640 pixels). As most 

models today operate on much lower resolution inputs. Faces and vehicle license plates 

have been blurred in the released images.  

Masks. Tee data engine produced 1.1B masks, 99.1% of which were generated fully 

automatically. Therefore, the quality of the automatic masks is centrally important. 

They compare them directly to professional annotations and look at how various mask 

properties compare to prominent segmentation datasets. The main conclusion is that the 

automatic masks are high quality and effective for training models. Motivated by these 

findings, SA-1B only includes automatically generated masks. 

Mask quality. To estimate mask quality, they randomly sampled 500 images (∼50k 

masks) and the professional annotators improved the quality of all masks in these 

images. Annotators did so use the model and pixel-precise “brush” and “eraser” editing 

tools. This procedure resulted in pairs of automatically predicted and professionally 

corrected masks. Meta AI Researchers computed IoU between each pair and found that 
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94% of pairs have greater than 90% IoU (and 97% of pairs have greater than 75% IoU). 

For comparison, prior work estimates inter-annotator consistency at 85-91% IoU [32, 

33]. Their experiments confirm by human ratings that mask quality is high relative to a 

variety of datasets and that training the model on automatic masks is nearly as good as 

using all masks produced by the data engine. 

Mask properties. In Fig. [6] They plot the spatial distribution of object centers in SA-

1B compared to the largest existing segmentation datasets. Common photographer 

biases are present in all datasets. They observe that SA-1B has greater coverage of 

image corners compared to LVIS v1 [32] and ADE20K [34], the two most similarly 

distributed datasets, while COCO [28] and Open Images V5 [33] have a more 

prominent center bias. In Fig. 7 (legend) they compare these datasets by size. SA-1B 

has 11× more images and 400× more masks than the second largest, Open Images. On 

average, it has 36× more masks per image than Open Images. The closest dataset in this 

respect, ADE20K, still has 3.5× fewer masks per image. Fig. 7 (left) plots the masks-

per-image distribution. Next, Meta AI Researchers look at image-relative mask size 

(square root of the mask area divided by image area) in Fig. 7 (middle). As expected, 

since the dataset has more masks per image, it also tends to include a greater percentage 

of small and medium relative-size masks. Finally, to analyze shape complexity, they 

look at mask concavity (1 minus mask area divided by area of mask’s convex hull) in 

Fig. 6 (right). Since shape complexity is correlated with mask size, they control the 

datasets’ mask size distributions by first performing stratified sampling from binned 

mask sizes. Meta-AI researchers observe that the concavity distribution of the masks is 

broadly similar to that of other datasets. 

 

CH8 Figure7: Dataset mask properties. The legend references the number of images and masks 

in each dataset. Note, that SA-1B has 11× more images and 400× more masks than the largest 

existing segmentation dataset Open Images [33]. 

4- Analysis 

4.1  Dataset Description 

This dataset was made possible by Google Earth. The dataset presented in this study is 

composed of satellite images that Were obtained from Google Earth and show industrial 

areas across the world that contain tanks. These tanks are used to store crude oil at 

various stages of the supply chain, as Well as for nations to stockpile oil reserves. The 

dataset is specifically focused on the storage of crude oil in tanks, and therefore, it 

includes images of tanks that are used for this purpose. The images in the dataset are 

annotated with bounding box information for floating head tanks, which are a specific 

type of tank where the head sits directly on top of the crude oil to prevent fumes from 

building up. Fixed head tanks, which do not have a floating head, are not annotated in 

the dataset. The annotations provide information about the location of the tanks within 

the images and allow for the accurate estimation of the volume of oil stored in the tanks. 

The dataset comprises large images that are saved in a 4800x4800 format. Each large 
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image is split into 100 smaller patches, with each patch measuring 512x512 pixels. 

There is an overlap of 37 pixels between the patches on both axes, which helps to ensure 

that there is no loss of information when the images are split into smaller patches. The 

smaller patches allow for more focused analysis of the images and make it easier to 

locate and annotate the floating head tanks accurately. The labels for the images are 

stored in two different formats: labels. json and labels_coco. json. The former provides 

the bounding box labels in the format of (x, y) coordinate pairs of the four corners of 

the bounding box. This format is useful for researchers who want to use the dataset for 

analysis and development of new algorithms. The latter format presents the labels in 

COCO (Common Objects in Context) format, which is a widely used format for object 

detection tasks in computer vision. In this format, the bounding boxes are formatted as 

[x_min, y_min, width, height], which makes it easier to use the dataset with existing 

object detection frameworks. In addition, the large_image_data.csv file provides 

metadata about the large image files in the dataset. This metadata includes the center 

coordinates and altitude of each image, which can be useful for researchers who want 

to understand the spatial distribution of the tanks and how they relate to other features 

in the landscape. Overall, the dataset provides a rich source of information for 

researchers interested in the analysis of oil storage tanks and their role in the global 

economy. 

 

4.2  Analysis and Results of Project 

This thesis project aims to develop and compare five models for oil storage detection 

using the YOLOv5x deep learning algorithm. The models' performance is evaluated 

based on precision, recall, and loss metrics. The dataset used in the project comprises 

10,000 images; however, only 1,720 images are annotated with labels. json and 

labels_coco.json files. The dataset is split into three subsets, with 500 images used for 

the first model, 1,000 images for the second model, and 1,720 images for the full 

dataset. Each model is trained using an 80-10-10 split for training, validation, and 

testing, respectively. 

The first comparison is made between the first two models, which are trained on 500 

and 1,000 images, respectively, for 50 epochs each. The comparison includes an 

analysis of the models' precision, recall, and loss metrics. The results of the comparison 

are presented in this thesis, providing valuable insights into the impact of the number 

of training images on model performance. The findings suggest that increasing the 

number of training images can significantly improve the models' precision, recall, and 

loss metrics. Specifically, the model trained on 1,000 images outperformed the model 

trained on 500 images in terms of precision, recall, and loss. Additionally, the model 

trained on the full dataset achieved the best performance, as expected, outperforming 

the other models in terms of precision, recall, and loss metrics. Overall, the comparison 

analysis provides a comprehensive evaluation of the five models' performance on the 

oil storage detection task. The results highlight the importance of using a sufficient 

number of training images to achieve high model performance, particularly in complex 

tasks such as object detection. The findings can inform future research on optimizing 

deep learning models for remote sensing applications, such as infrastructure 

management and environmental monitoring. 
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For 500 images, the number of train images is 398, the number of validation images is 

54, and the number of test images is 48 images. For 1000 images, the number of train 

images: is 820, the number of validation images: is 94, and the number of test images: 

is 86. 

4.2.1. The comparison between the first two models: 

 
         500 images [50 epochs] 

 

 
         1000 images [50 epochs] 

 
Accuracy plot  

 

Accuracy plot  

 

  

Validation accuracy [11 %]  
  

  

Validation accuracy [13 %]  
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Test [ ex: 14_1_3.jpg]  

  

  

Test [ ex: 14_2_8.jpg]  

  

  

 
                         CH 8 Table 1 Comparison between the first two models 
 

4.2.2 Analysis of Table [1] 

The performance of two models trained on 500 and 1000 images, respectively, were 

evaluated in terms of precision and recall. The first model demonstrated a decreasing 

trend in precision, with a value of 0.115, while recall increased to 0.656. Similarly, the 

second model also exhibited a decreasing trend in precision, with a value of 0.14, while 

recall increased to 0.718. Despite these trends, the validation images showed acceptable 

performance, as measured by mean average precision (mAP50) and mean average 

precision over different intersection-over-union (IoU) thresholds (mAP0.5:0.95), with 

values of 0.108 and 0.0789 for the first model, and 0.127 and 0.0958 for the second 

model, respectively. Moreover, the models displayed accurate predictions when tested 

on new images, as demonstrated in Table 1. The ability of the models to generalize to 

previously unseen data is critical for their practical application and underscores the 

effectiveness of the training process. The observed trends in precision and recall suggest 

that further optimization may be necessary to improve the models' performance, 

particularly in applications where high precision is paramount. Overall, these findings 

demonstrate the models' potential for automated image classification and segmentation. 

To evaluate the performance of the first model trained on 500 images for object 

detection, a comparison was made between the predicted bounding boxes generated by 

the model and the ground truth. As illustrated in Figure 8, the comparison revealed that 

the model was able to detect objects accurately, yielding results that were in close 

agreement with the ground truth. This indicates that the model was effective in learning 

the relevant features from the training dataset and generalizing this knowledge to new 

images. Accurate object detection is a critical factor in many computer vision 

applications such as surveillance, autonomous vehicles, and robotics. The ability of the 

model to produce accurate predictions for object detection underscores its potential for 

practical applications in these domains. These findings highlight the importance of 

effective training methodologies in achieving high-quality results and demonstrate the 

potential of the model for automated object detection. Further research may be 
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necessary to optimize the model's performance for specific applications and to explore 

the potential of larger datasets for improving model accuracy. 

       

       

          CH 8 Figure8 Predicted and ground truth for 500 images with 50 epochs.  
 

 To evaluate the performance of the second model trained on 1000 images for object 

detection, a comparison was conducted between the predicted bounding boxes 

generated by the model and the ground truth. The results of this analysis, illustrated in 

Figure 9, demonstrate the model's ability to accurately detect objects, with predictions 

that closely match the ground truth. These results support the hypothesis that the model 

was effective in learning the relevant features from the training dataset and generalizing 

this knowledge to new images. The accuracy of object detection is a crucial factor in 

many computer vision applications, and the success of the model in producing accurate 

predictions underscores its potential for practical applications in areas such as 

surveillance, robotics, and autonomous vehicles. These findings highlight the 

importance of effective training methodologies in achieving high-quality results and 

demonstrate the potential of the model trained on 1000 images for automated object 

detection. Further research may be necessary to optimize the model's performance for 

specific applications and to explore the potential of larger and more complex datasets 

for improving model accuracy. Future studies may also focus on the scalability of the 

model to handle larger datasets and the potential for transfer learning to improve model 

performance. Overall, these results contribute to our understanding of the effectiveness 

of deep learning models for object detection and suggest the potential for continued 

progress in this field. 
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                CH 8 Figure 9 Predicted and ground truth for 1000 images with 50 epochs.  

 

4.2.3 Comparison between full dataset images based on the number of 

epochs [80-10-10 train Val test]  

The number of train images is 1473, the number of validation images is 172, and the 

number of test images is 184. 

Full data 50 epochs Full data 80 epochs Full data 150 epochs 

  
Accuracy plot  
 

  

Accuracy plot  
 

  

Accuracy plot  
 

  



 
Page | 182 

 

Validation accuracy[13%]  

  

  

Validation accuracy [15 %]  
 

 

Validation accuracy[15%]  

   

Test [ ex: 13_2_2.jpg]  

   

Test [ ex: 13_2_2.jpg]   Test [ ex: 13_2_2.jpg]   

                   CH 8 Table 2 Comparison between the full dataset models 

4.2.4 Analysis of Table [2] (full dataset comparison) 

The performance of deep learning models for oil storage detection using YOLOv5 is 

evaluated based on precision, recall, and mean average precision (MAP) metrics. The 

impact of varying the number of epochs on the models' performance is investigated. 

The results show that as the number of epochs increases, the recall increases, and the 

precision decreases. However, the recall score for the model of 50 epochs increased 

until 50 epochs, after which it decreased for models of 80 and 150 epochs. These 

findings suggest that the optimal number of epochs for achieving high accuracy may 

vary depending on the specific dataset and model configuration. To validate the 

performance of the models, they Were evaluated on new images, and the results showed 

that all models accurately predicted the presence of tanks and floating heads in the 

images compared to the ground truth. This indicates that the models developed in this 

study have the potential to be useful in predicting similar objects in other images. The 

findings highlight the importance of selecting an appropriate number of epochs for 

model training to achieve optimal performance. Overall, the focus is on assessing the 

model's ability to predict oil storage facilities in satellite images accurately. The model's 

performance is evaluated based on its ability to detect objects that are not annotated yet, 

as well as the ground truth. The evaluation of the model's performance is conducted by 

comparing the predicted images to the ground truth. The results show that the model is 

highly effective in predicting not only the ground truth but also objects that are not yet 

annotated. This is demonstrated in Figure [10] below, which shows the predicted 

images compared to the ground truth. The high accuracy of the model in detecting oil 

storage facilities in satellite images is essential for effective resource management and 

environmental protection. The ability of the model to detect objects that are not yet 

annotated demonstrates its potential for application in the oil and gas industry. The 
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findings of this study highlight the importance of using machine learning algorithms 

for oil storage detection and the potential benefits they offer. This result demonstrates 

the effectiveness of the deep learning model trained on the full dataset with 80 epochs 

in detecting oil storage facilities in satellite images. The model's ability to predict 

objects that are not yet annotated further highlights its potential for application in the 

oil and gas industry. Further research can explore the application of this model in other 

datasets and image types to further evaluate its effectiveness. 

          

         

            

       CH 8 Figure 10 Predicted and ground truth for the second model with 80 epochs. 
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         CH8 Table3 Summary of Yolov5 models based on P, R, and mAP50 values. 

The summary table [3] highlights the performance of various models on full datasets 

containing 1720 images, with varying numbers of training epochs. Upon analysis, it 

was observed that Model 4 and Model 5 outperformed the other models with respect to 

precision, recall, and MAP50. Additionally, testing on new images also demonstrated 

superior performance by these models. Specifically, Model 4 and Model 5 achieved 

higher accuracy on the testing set compared to other models. These findings suggest 

that training deep learning models for a greater number of epochs can significantly 

improve their performance and generalization capabilities, resulting in more accurate 

and reliable predictions on new data. 

 

 

 

 Model 1 

500 

images 

50 epochs 

Model 2 

1000 

images 

50 epochs 

Model 3 

1720 

images 

50 epochs 

 

Model 4 

1720 

images 

80 

epochs 

Model 5 

1720 

images 

150 epochs 

Precession For All 

Classes [P]  

0.115 0.14 0.117 0.128 0.138 

Precession For 

class Tank 

0.108 0.101 0.109 0.0976 0.0926 

Precession For 

class Tank 

Cluster 

0.07 0.115 0.0393 0.0794 0.12 

Precession For 

class Floating 

Head Tank 

0.166 0.203 0.204 0.208 0.203 

Recall For All 

Classes [R] 

0.656 0.718 0.708 0.729 0.819 

Recall For class 

Tank 

0.865 0.876 0.961 0.961 0.974 

Recall For class 

Tank Cluster 

0.133 0.291 0.188 0.25 0.5 

Recall For class 

Floating Head 

Tank 

0.969 0.986 0.977 0.977 0.983 

MAP50 For All 

Classes [mAP50] 

0.108 0.127 0.13 0.151 0.148 

MAP50 For class 

Tank 

0.117 0.111 0.137 0.126 0.124 

MAP50 For class 

Tank Cluster 

0.0236 0.0553 0.0184 0.0896 0.0781 

MAP50 For class 

Floating Head 

Tank 

0.183 0.214 0.234 0.239 0.242 
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4.2.5 Results of Sam 

The results obtained using the Segment Anything Model (SAM) demonstrate that 

image segmentation, rather than detection, is a more effective approach for recognizing 

different classes. Specifically, the segmentation model was able to accurately identify 

and classify various objects within the images, as shown in Fig. [11]. 

          

          

          

                                  CH 8 Figure 11 Results of SAM (Image Segmentation) 
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5. Conclusion 

In conclusion, this thesis project aims to develop a cutting-edge remote sensing solution 

that utilizes deep learning algorithms to process, analyze, and interpret satellite data. 

The focus of the research is on oil storage detection, given its critical role in 

infrastructure management and its impact on multiple sectors, such as industry and 

energy. The proposed solution involves training a deep learning model to estimate the 

location of oil storage tanks, floating head tanks, and tank clusters using high-resolution 

training datasets and the state-of-the-art YOLOv5 algorithm. The project has significant 

potential to enhance infrastructure management, particularly in monitoring oil tanks, 

thereby contributing to the overall efficiency and safety of the infrastructure. The 

research also explores the potential applications of the developed model in other fields 

and discusses the ethical and social implications of using deep learning algorithms in 

remote sensing and infrastructure management. Overall, this thesis project seeks to 

develop a novel and innovative solution for remote sensing and infrastructure 

management, leveraging state-of-the-art deep learning techniques to improve efficiency 

and safety while contributing to sustainable development. The project's findings can 

have significant implications for the field of remote sensing and infrastructure 

management, contributing to the advancement of knowledge and technology in this 

area. In future research work, the focus will be on optimizing the network structure, 

reducing the training time of the model, and further improving the detection accuracy 

and real-time of the model; at the same time, expanding the current data set, using SAM 

and RoboFlow to automatically label more images in the satellite dataset, and 

improving the generalization performance of the oil tank detection algorithm. 
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9. GUI 

The goal of this project is to improve the accessibility and usability of our software for 

a wide range of users, including farmers, NGOs, and businesses. To do this, we created 

a graphical user interface (GUI) for our software. This section describes how we 

converted our projects into a graphical user interface and emphasises some of the main 

aspects that make it user-friendly. Converting our projects to a graphical user interface 

(GUI) required numerous processes, including the creation of a layout and the 

integration of current software capabilities into a graphical interface. The GUI interface 

was designed to be straightforward and simple to use, with clear labelling of buttons 

and menus. We provided helpful tooltips that appear when the user hovers over an 

element to help users understand the purpose and operation of each piece. We also 

organised the projects in a logical manner so that users could simply follow the 

workflow and access the relevant functionality. On the left side of the GUI, there is a 

navigation panel that displays the available projects in a hierarchical order. Users can 

choose a project from this panel, which displays project details and gives them access 

to project-specific capabilities. Figure 9-1 illustrates our GUI's home page, which 

provides an overview of the various projects. 

 

                                       Figure 9-1: Our GUI's home page. 

We displayed the team of the graduation projects in our graphical user interface (GUI) 

to provide a comprehensive view of each project. The process involved collecting 

information about the team members of each project, such as their names, e-mails, and 

photos, and creating a dedicated page in the GUI for displaying the team of each project. 

The team members were arranged in a grid layout, and their photos and e-mails were 

included in a list. Figure 9-2 displays the team of the graduation projects in our GUI.  
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                                Figure 9-2 Team Members of the project. 

The first tab of our graphical user interface (GUI) contains the data gathering project, 

which enables users to select a polygon from the map that relates to Google Earth 

Engine. By using the built-in tools on the map, users can create a polygon or bounding 

box around any specific area. Once the polygon or bounding box is created, users can 

save the coordinates of the polygon in a JSON file. The JSON file that contains the 

coordinates, can be used to download dataset imagery for the selected area. This feature 

enhances the accessibility and usability of our software by providing users with an easy 

and efficient way to select and save polygons or bounding box coordinates. The data 

gathering project in the GUI includes three sections in the first tab. we will describe the 

first two sections, which allow users to search for the desired location and define 

processing parameters for downloading the dataset in a specific period of time. The first 

section of the first tab is "Search Location," which allows users to enter the desired 
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location. The location is automatically displayed on the map, as the map is related to 

Google Earth Engine. Once the desired location is displayed on the map, users can 

proceed to the second section, which is "Define Processing Parameters". The "Define 

Processing Parameters" section enables users to enter the start date and end date for the 

dataset they wish to download. In addition, users can select the type of satellite they 

want to use, such as Sentinel 1 or 2. Once the processing parameters are defined, users 

can proceed to download the dataset for the specified period of time. The third section, 

"Area of Interest," enables users to upload a shapefile or GeoJSON file, search for a 

URL from their local computer, or search for Earth Engine assets. This feature enhances 

the usability of our software by providing users with a simple and efficient way to 

search for the desired location and define processing parameters for downloading the 

dataset. Figure 9-3 displays an example of the data gathering project in the GUI and the 

first two sections of the first tab. 
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                                    Figure 9-3 data gathering project in the GUI. 

The second tab of the application is used for crop classification. The user can select the 

type of crop they want to classify in any area around the world , and the application will 

provide information about the location of the crop and the amount of harvesting in 

different months. For example, if the user selects corn, the application will show the 

predicted masks of corn in the desired area which the user selects in the first tab . Figure 

9-4 shows the true mask and predicted mask of corn in IOWA state in the United States. 
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               Figure 9-4 True mask and predicted mask of “Corn” model of IOWA state. 

The third project or tab is dedicated to displaying crop issues. Users can upload images 

of their land to see if they contain any diseases or problems. If they do, the type of crop 

issue is displayed, as well as a predicted mask in the GUI as illustrated in figure 9-5. 

 

                             Figure 9-5 crop issues project displayed in the GUI. 

The fourth project or tab is dedicated to oil storage detection. Users can upload images 

in patches from their satellite imagery dataset to see the number of tanks, floating heads, 

and tank clusters in any area, as well as their location. Figure 9-6 shows an example of 

the output of the project. 

 

                        Figure 9-6 oil storage detection project displayed on GUI. 

The fifth project, titled "Water Resource Analysis," allows users to visualize and 

analyze drought indices and soil moisture data. The left-hand image shows the analysis 

of SMAP L4 soil moisture data in July 2023. Soil moisture data can provide valuable 
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insights for farmers to improve crop yields by optimizing irrigation and fertilizer 

application. Monitoring soil moisture levels can also help detect drought conditions 

early, allowing for timely interventions to mitigate their impacts. By understanding soil 

moisture data, water managers can make more informed decisions about water 

allocation and conservation. Furthermore, such data can improve weather forecasting 

accuracy, enhance climate modeling, and support disaster management efforts by 

providing critical information on soil saturation levels. The right-hand image shows the 

change in drought indices in the world in 2023. By analyzing these indices, it is possible 

to determine patterns in climate and water availability, and anticipate the likelihood and 

severity of drought, while also taking into account the effects of drought, as illustrated 

in figure 9-7 

 

                             Figure 9-7 Water Resources Analysis displayed in GUI. 

 

10. Organizations’ Collaborations 

Faculty Mission 

The Faculty of Navigation Sciences and Space Technology at Beni Suef University is 

the first specialized college of its kind in the Middle East in the fields of space 

navigation, applications, and technology. It includes two main programs: the Program 

of Space Navigation and the Applied Sciences Program for Navigation and Space.  Our 

faculty is committed to advancing research and innovation in the field of space 

technology and engineering. As part of its mission, it has established partnerships with 

several organizations, including the European Space Agency (ESA), Napta Playa (NP), 

and Environmental Systems Research Institute (ESRI). 

Collaboration with Napta Playa 

Napta Playa is a remote sensing research institute, and they are a non-profit 

organization focusing on space related research activities to develop state of the art 

solutions that solve societal and business challenges. Our collaboration with Napta Play 
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is focused on providing the team with training and supervision for our graduation 

project related to the Remote Sensing field. Napta Play provides us with supervision 

and training, as well as access to AWS servers and images from other partnership 

organizations. The collaboration provides the team members with valuable experience 

in working with industry-standard tools and technologies and helps to prepare us for 

careers in the field of remote sensing. Additionally, the collaboration with Napta Play 

has opened new opportunities for research and innovation in the field for other students 

at different levels at our faculty. 

Impact of Collaboration 

The collaboration with Napta Play has had a significant impact on our faculty and the 

team members, as well as on the broader industry. By providing supervision and 

training for us and will be for other students at different levels, as well as access to 

essential resources and technologies, they have been able to enhance the quality of our 

graduation project and prepare us for successful careers in the field of remote sensing. 

Collaboration with ESA 

The European Space Agency (ESA) is Europe’s gateway to space. Its mission is to 

shape the development of Europe’s space capability and ensure that investment in space 

continues to deliver benefits to the citizens of Europe and the world. One of our most 

significant collaborations with ESA has been in the area of crop classification, 

specifically with respect to corn yields. In 2020, ESA released a new corn map that 

provided detailed information on corn growth and yields across different regions. Our 

faculty was able to use this map as the basis for a joint research project with ESA to 

improve crop classification models for predicting corn yields and masks in different 

months. The joint research project involved faculty and students from the space 

navigation program working remotely with ESA researchers to exchange ideas and 

develop new methods for crop classification. Our students were able to gain valuable 

insights into the work of ESA researchers and apply this knowledge to the development 

of a new crop classification model that predicts corn yields and masks with high 

accuracy in different months. Here is an example of Egypt’s Nile Farmland for corn 

yield prediction.  
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Impact of Collaboration 

The collaboration between our faculty and ESA has had a significant impact on our 

research in crop classification, as well as on the broader agricultural industry. Our new 

crop classification model will be widely adopted by farmers and agricultural researchers 

and will help to improve the accuracy and efficiency of crop yield predictions. 

Collaboration with ESRI 

Esri is an American multinational geographic information system software company. It 

is best known for its ArcGIS products. With a 43% market share, Esri is the world's 

leading supplier of GIS software, web GIS and geodatabase management applications. 

One of our most successful collaborations with ESRI has been the provision of licenses 

for their popular GIS software programs, QGIS, ArcMap, and ArcGIS. As part of this 

collaboration, ESRI provided our faculty with licenses for these programs, which we 

have made available to our students at different levels of study. This collaboration has 

provided our students with access to cutting-edge GIS software programs that are 

widely used in the industry and has helped to prepare them for careers in the field of 

remote sensing. Additionally, the collaboration has strengthened our relationship with 

ESRI and has opened new opportunities for research and innovation in the field of GIS. 

Impact of Collaboration 
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The collaboration with ESRI has had a significant impact on our faculty and the 

students, as well as on the broader academic community. By providing access to these 

essential software programs, we have been able to enhance the quality of our teaching 

and to provide other students at different levels and programs with valuable hands-on 

experience with industry-standard tools and technologies. One of the main challenges 

we encountered during this collaboration was the need to ensure that the programs were 

accessible to all students, regardless of their level of study or technical expertise. 

However, we will be able to overcome this challenge by providing training and support 

to students to ensure that the programs will be optimized for our specific needs. 

 

11. Future plan 

Since the inception of our teamwork, we have been driven by the vision of developing 

an integrated system to establish and launch a specialized company in satellite imagery 

and remote sensing operations. Our initial focus has been on creating an automated 

mechanism for data collection across various applications, laying the foundation for 

other project ideas. In line with this vision, we have pursued two main approaches. The 

first centers on precision agriculture, a sector that exhibited a valuation of US $5,147.6 

million in 2020. According to statistics, this market is projected to reach US $10,491.45 

million by 2026, with a combined annual growth rate of 12.6% during the period 2021-

2026.The second approach revolves around infrastructure, particularly oil storage 

detection. By leveraging satellite imagery and remote sensing data, we aim to enhance 

the monitoring and management of oil storage facilities, supporting industries 

associated with oil storage and transportation. 

Both of these approaches will be subject to continuous development and updates, 

aligning with advancements in technology and the availability of new datasets. While 

we have not yet achieved our optimal targets in each project, we remain steadfast in our 

vision. With our results and background knowledge, we are committed to pushing 

forward until we realize our goals. 

Crop Recommendation (cop28) 

During our project, we have conducted a comprehensive study on the various aspects 

that affect proper plant selection. We have identified several crucial factors, including 

sunlight or solar radiation, water resources and management, climate change, 

temperature, crop health, and soil characteristics. These factors play a significant role 

in determining the suitability of plants for specific areas . One key tool we have utilized 

in our analysis is satellite imagery. By analyzing satellite images, we can gather 

valuable information on these factors. Satellite data provides insights into sunlight 

intensity, water availability, climate patterns, temperature variations, and soil 

conditions. To enhance our project, we have incorporated crop classification, tree 

detection, and crop anomaly detection techniques. These additions enable us to provide 

strategic recommendations for plant selection in Egypt's agricultural sector. Leveraging 

the power of satellite imagery and remote sensing data, our project aims to serve the 

overall agricultural community in Egypt by optimizing plant selection based on the 
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identified factors. We propose this project as an idea for inclusion in COP28, as it 

addresses the intersection of agriculture, technology, and environmental sustainability. 

It has the potential to contribute significantly to agricultural practices and support 

Egypt's agricultural sector in adapting to changing environmental conditions. 

12. Conclusion   

This thesis examines the combination of remote sensing and artificial intelligence (AI) 

methods for analyzing the environment and managing infrastructure. The thesis 

presents five interconnected projects that focus on data collection and processing, water 

resources management, anomaly detection in crop patterns, crop classification, and oil 

storage detection. The outcomes of these projects will provide practical tools and 

methodologies for researchers, policymakers, and industry professionals in various 

fields. This research aims to contribute to sustainability, precision agriculture, and 

infrastructure management by harnessing the potential of advanced technologies. The 

integration of remote sensing and AI techniques has the potential to transform our 

approach to environmental and infrastructure management. These technologies enable 

the collection and analysis of data on a scale and speed that was previously unattainable. 

This data can then be utilized to make more informed decisions regarding resource 

allocation, disaster response, and environmental conservation. The projects presented 

in this thesis serve as examples of the numerous ways in which remote sensing and AI 

can be applied to address urgent environmental challenges. As these technologies 

continue to advance, we can anticipate even more innovative and efficient applications 

in the future. 
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